
FA K U LT Ä T F Ü R I N F O R M AT I K
Technische Universität München

Master’s Thesis in Informatics

T Y P I C A L D E V E L O P M E N T P R O C E S S E S O F F R E E
A N D O P E N S O U R C E S O F T WA R E P R O J E C T S

daniel g . siegel

FA K U LT Ä T F Ü R I N F O R M AT I K
Technische Universität München

Master’s Thesis in Informatics

T Y P I C A L D E V E L O P M E N T P R O C E S S E S O F F R E E
A N D O P E N S O U R C E S O F T WA R E P R O J E C T S

author : daniel g . siegel

supervisor : univ.-prof . dr . peter hubwieser

advisor : marcus bitzl

date : may 15
th , 2012

D E C L A R AT I O N

I assure the single handed composition of this master’s thesis only
supported by declared resources.

Munich, May 15th, 2012

Daniel G. Siegel

iii

A B S T R A C T

Free and Open Source Software is a research subject which has con-
stantly been gaining importance for modern digital life over the past
20 years. The World Wide Web as we know it today would have been
impossible without the free availability of source code, vivid develop-
ment communities and consequent support for open standards. De-
spite these facts, there has been little research about the particular
similarities or differences in the development processes and struc-
tures of Free and Open Source Software projects.

This thesis aims to provide an introduction into the development
processes and project management strategies of Free and Open Source
Software projects. To accomplish this, a project analysis catalogue is
established with which Free and Open Source Software can be ana-
lyzed systematically and satisfactorily for the goals of this thesis. Fol-
lowing this catalogue several Free and Open Source Software projects
are analyzed in order to identify concertedly models and processes.

The results corroborate suggestions that especially large and ma-
ture Free and Open Source Software projects have established similar
structures and processes. This includes very hierarchical structures
with akin roles, similar release cycles and analogical development
processes which cannot be resembled with traditional or agile soft-
ware engineering methods.

iv

C O N T E N T S

1 introduction 1

1.1 Problem and Motivation 1

1.2 Outline of the Thesis . 2

2 theoretical background 3

2.1 Grounded Theory . 3

2.2 Qualitative Content Analysis 4

2.3 Application in Computer Science 5

2.4 Software Engineering Comparison Models 6

2.4.1 Traditional Software Engineering Models 6

2.4.2 Agile Software Engineering Models 8

3 related work 10

3.1 Project Structure . 10

3.2 Motivation . 11

3.3 Software Engineering . 11

3.4 Case Studies . 12

4 methodology 13

4.1 Project Selection . 13

4.1.1 Category . 13

4.1.2 Popularity . 13

4.1.3 Project Age . 13

4.1.4 Activity . 14

4.1.5 Community . 14

4.2 Final Selection . 15

4.3 Visualization of Project Data 15

4.3.1 Commits by Author 16

4.3.2 Commits by Year 17

4.3.3 Time Based View 17

4.3.4 Commits by Month 18

4.3.5 Authors by Month 19

5 development process analysis 21

5.1 Drupal Project Analysis 21

5.1.1 History . 21

5.1.2 Community . 21

5.1.3 Release Process 24

5.1.4 Development . 26

5.2 Plone Project Analysis 27

5.2.1 History . 28

5.2.2 Community . 28

5.2.3 Release Process 30

v

contents vi

5.2.4 Development . 31

5.3 Python Project Analysis 34

5.3.1 History . 34

5.3.2 Community . 34

5.3.3 Release Process 37

5.3.4 Development . 38

5.4 PHP Project Analysis . 41

5.4.1 History . 41

5.4.2 Community . 42

5.4.3 Release Process 44

5.4.4 Development . 45

5.5 GNOME Project Analysis 47

5.5.1 History . 48

5.5.2 Community . 49

5.5.3 Release Process 51

5.5.4 Development . 54

5.6 KDE Project Analysis . 54

5.6.1 History . 55

5.6.2 Community . 55

5.6.3 Release Process 57

5.6.4 Development . 61

5.7 Proposition for a Project Analysis Catalogue 62

5.7.1 Description of the Project 62

5.7.2 Project Category 62

5.7.3 Scope of Analysis 62

5.7.4 License . 62

5.7.5 History . 62

5.7.6 Community . 63

5.7.7 Release Process 63

5.7.8 Development . 64

5.8 PostgreSQL Project Analysis 65

5.8.1 Project Category 65

5.8.2 Scope of Analysis 65

5.8.3 License . 65

5.8.4 History . 65

5.8.5 Community . 65

5.8.6 Release Process 66

5.8.7 Development . 67

5.9 MySQL/MariaDB Project Analysis 68

5.9.1 Project Category 68

5.9.2 Scope of Analysis 68

5.9.3 License . 69

5.9.4 History . 69

5.9.5 Community . 69

5.9.6 Release Process 70

5.9.7 Development . 71

contents vii

5.10 Fedora Project Analysis 72

5.10.1 Project Category 72

5.10.2 Scope of Analysis 72

5.10.3 License . 72

5.10.4 History . 72

5.10.5 Community . 73

5.10.6 Release Process 74

5.10.7 Development . 74

5.11 Debian Project Analysis 75

5.11.1 Project Category 75

5.11.2 Scope of Analysis 75

5.11.3 License . 75

5.11.4 History . 76

5.11.5 Community . 76

5.11.6 Release Process 77

5.11.7 Development . 77

6 comparison of development processes 79

6.1 Project Origin . 79

6.2 Community . 80

6.2.1 Community Size 80

6.2.2 Communication 81

6.2.3 Conferences . 82

6.2.4 Roles . 82

6.2.5 Project Founders 84

6.3 Release Process . 85

6.3.1 Versioning Scheme 85

6.3.2 Release Schedule 86

6.4 Development . 89

6.4.1 Development Lead 89

6.4.2 Development Workflow 90

6.4.3 Feature Inclusion Process 90

7 discussion 93

7.1 Project Origin . 93

7.2 Community . 93

7.3 Release Process . 95

7.4 Development . 95

8 conclusion 97

bibliography 100

Appendix 105

a comparison of project graphs 106

b project resources 111

b.1 Drupal . 111

b.2 Plone . 111

contents viii

b.3 Python . 112

b.4 PHP . 113

b.5 GNOME . 114

b.6 KDE . 115

b.7 PostgreSQL . 115

b.8 MySQL/MariaDB . 116

b.9 Fedora . 117

b.10 Debian . 118

L I S T O F F I G U R E S

Figure 2.1 Grounded Theory Process 3

Figure 2.2 Inductive Qualitative Content Analysis Process 4

Figure 2.3 Original Waterfall Model 6

Figure 2.4 Spiral Model . 7

Figure 2.5 Extreme Programming Model 8

Figure 2.6 Scrum Model . 8

Figure 4.1 The Commits by Author Graph 16

Figure 4.2 The Commits by Year Graph 17

Figure 4.3 The Time Based View Graph 17

Figure 4.4 The Commits by Month Graph 18

Figure 4.5 The Authors by Month Graph 19

Figure 5.1 Commits by Most Active Authors, Drupal . . . 22

Figure 5.2 Commits by Year, Drupal 24

Figure 5.3 Major Releases of Drupal 24

Figure 5.4 Time Based View on Commits, Drupal 25

Figure 5.5 Drupal Release Process Phases 25

Figure 5.6 Commits by Month, Drupal 26

Figure 5.7 Authors by Month, Drupal 27

Figure 5.8 Commits by Most Active Authors, Plone 29

Figure 5.9 Commits by Year, Plone 30

Figure 5.10 Time Based View on Commits, Plone 30

Figure 5.11 Major Releases of Plone 31

Figure 5.12 Commits by Month, Plone 32

Figure 5.13 Status Paths of Plone Improvement Proposals . 32

Figure 5.14 Authors by Month, Plone 33

Figure 5.15 Commits by Most Active Authors, Python . . . 35

Figure 5.16 Commits by Year, Python 36

Figure 5.17 Time Based View on Commits, Python 36

Figure 5.18 Commits by Month, Python 37

Figure 5.19 Major Releases of Python 37

Figure 5.20 Excerpt from Python Enhancement Proposal 8 38

Figure 5.21 Authors by Month, Python 39

Figure 5.22 Status Paths of Python Enhancement Proposals 40

Figure 5.23 Commits by Most Active Authors, PHP 42

Figure 5.24 Commits by Year, PHP 43

Figure 5.25 Time Based View on Commits, PHP 43

Figure 5.26 Preliminary PHP Release Cycle 44

Figure 5.27 Major Releases of PHP 44

Figure 5.28 Commits by Month, PHP 45

Figure 5.29 Status Paths of PHP Request for Comments . . 46

Figure 5.30 Authors by Month, PHP 47

ix

Figure 5.31 Commits by Most Active Authors, GNOME . . 48

Figure 5.32 Commits by Year, GNOME 50

Figure 5.33 GNOME 3.4 Release Schedule 51

Figure 5.34 Major Releases of GNOME 51

Figure 5.35 Commits by Month, GNOME 52

Figure 5.36 Time Based View on Commits, GNOME 52

Figure 5.37 Authors by Month, GNOME 53

Figure 5.38 Commits by Most Active Authors, KDE 57

Figure 5.39 Commits by Year, KDE 58

Figure 5.40 Major Releases of KDE 58

Figure 5.41 Commits by Month, KDE 59

Figure 5.42 Authors by Month, KDE 60

Figure 5.43 Time Based View on Commits, KDE 60

Figure 6.1 Comparison of Development Related Roles . . 83

Figure 6.2 Representation of Development Cycles 88

Figure 6.3 Representation of Feature Inclusion Processes 91

Figure 7.1 Free and Open Source Software Project Devel-
opment Structure 94

Figure 7.2 Life Cycle Model of Free and Open Source Soft-
ware Projects . 96

Figure A.1 Overview of Time Based View Graphs 106

Figure A.2 Overview of Commits by Author Graphs . . . 107

Figure A.3 Overview of Commits by Year Graphs 108

Figure A.4 Overview of Commits by Month Graphs . . . 109

Figure A.5 Overview of Authors by Month Graphs 110

L I S T O F TA B L E S

Table 4.1 List of Analyzed Free and Open Source Soft-
ware Projects . 15

Table 5.1 Previous and Planned Drupal Conferences . . 23

Table 5.2 Previous and Planned GNOME Conferences . 49

Table 5.3 Previous and Planned KDE Conferences 56

Table 6.1 Used Licenses in the Analyzed Projects 79

Table 6.2 Project Founders and Origins 80

Table 6.3 Versioning Schemes in the Analyzed Projects . 86

x

A C R O N Y M S

ABI Application Binary Interface

API Application Programming Interface

BDFL Benevolent Dictator For Life

CDE Common Desktop Environment

CMF Content Management Framework

CMS Content Management System

DFSG Debian Free Software Guidelines

FESCo Fedora Engineering Steering Committee

FOSS Free and Open Source Software

GNU GNU’s Not Unix

GNU GPL GNU General Public License

GNU LGPL GNU Lesser General Public License

GTK GIMP Tool Kit

IRC Internet Relay Chat

KDE SC KDE Software Compilation

ORDBMS Object-Relational Database Management System

PEP Python Enhancement Proposal

PLIP Plone Improvement Proposal

QPL Q Public License

RFC Request for Comments

SIG Special Interest Group

SQL Structured Query Language

UI User Interface

UTC Coordinated Universal Time

XP Extreme Programming

xi

1
I N T R O D U C T I O N

1.1 problem and motivation

Without Free and Open Source Software (FOSS) the modern digital
life would be different. FOSS projects empower Fortune 500 companies
such as Google, Amazon, Red Hat or Facebook. They also are key
figures in the internet, running on most of the servers, but also on
smartphones or other devices. However FOSS projects do not only
have an important role in the modern software ecosystem, there is
also an active development community behind them which consists
of volunteers but also companies.

Lowdown such as the costs, the free availability of the source code
and the number of people who work on a single project are certainly
positive aspects of FOSS projects. They allow to use them without big
investments and risks to implement an idea quickly and effectively.
A matching example is the company Google which used the Linux
operating system to build big data centers cost-effectively. That is
just one of the many reasons why FOSS has become quite popular
especially in the last years.

On account of the different origins and backgrounds of the sin-
gle projects, different development models have evolved, which seem
inimitable. Examples are the different communities, development and
release cycles, used tools or the project structure. When comparing
them at first glance they indeed look quite different, too diverse seem
the different project leaders, the communities and the goals of each
project. The question here is now whether projects have common
grounds or use so called best practices.

Unfortunately there are not too many scrutinies which aim for sim-
ilarities or differences in the development processes of FOSS projects.
There exist however many studies about single aspects of projects,
such as the motivation of developers, the social structure inside a
project, the communication, development workflows or software en-
gineering methods. This thesis aims to provide a primary step into
this direction, summarizing the findings and trying to establish a
common ground.

Concretely, this study tries to answer the following research ques-
tion: How do FOSS projects work, which structures do they have and
which workflows have they established. To accomplish this, several
FOSS will be analyzed in order to identify concertedly models. In ad-
dition they will be compared to traditional software engineering mod-
els in order to see whether they are similar or oppose differences.

1

1.2 outline of the thesis 2

1.2 outline of the thesis

chapter 1 – introduction This chapter presents an overview
of the thesis and introduces the reader to the problem and motivation
of this analysis.

chapter 2 – theoretical background In order to empower
a scientific research for the project analysis, several research methods
and tools will be introduced in this chapter. Additionally traditional
and agile software engineering methods will be discussed.

chapter 3 – related work An outline of related researches
in the field of FOSS, the development processes, case studies and soft-
ware engineering methods are presented with appropriate references.

chapter 4 – methodology The used methodology and expla-
nations of visualized project data will be provided in this chapter.
This includes a general explanation of methods and the presentation
of collected data.

chapter 5 – development process analysis A deeper look
is made at several FOSS projects, coming up with an analysis catalogue
and applying that on further projects. This analysis will be the center
piece on which further chapters build on.

chapter 6 – comparison of development processes This
chapter examines the previous made analysis and compares the find-
ings by working through the established catalogue and analyses.

chapter 7 – discussion The findings will be evaluated, ana-
lyzed and compared with traditional software engineering methods,
related findings by other researchers and previously explained meth-
ods.

chapter 8 – conclusion The thesis finally concludes with a
summary and draws together the main findings of the study along
with possible future directions.

2
T H E O R E T I C A L B A C K G R O U N D

In order to analyze and compare development workflows, a series
of scientific research methodologies were used. This chapter gives an
introduction to these methods and tries to vindicate their usage.

2.1 grounded theory

Theoretical Sampling

Data Collection

Data Ordering

Data Analysis

Theory Development

Theory Saturation

Research Closure

Saturated

N
ot

Sa
tu

ra
te

d

Figure 2.1: Process of theory building using the Grounded Theory as re-
search method according to Strauss and Corbin [Pan96].

The Grounded Theory approach is a systematic research methodol-
ogy first published by Glaser and Strauss [GS67] in 1967. It first was
applied in social sciences gathering data and discovering a theory af-
ter an analysis of the rallied data. Grounded Theory is mostly used
in qualitative research and operates quite different from traditional
research methods. It always starts with the collection of data on the
researched subject. Thereafter the collected items are marked with

3

2.2 qualitative content analysis 4

codes which later can be grouped into different categories. They are
the base of an emerging theory which can be established out of the
gathered data and its analysis.

However Glaser and Strauss have established different opinions on
the Grounded Theory approach [Hea04]. This has lead to different
appendages, which either favor the Glaser or the Strauss understand-
ing on the application of the Grounded Theory. The most important
difference seems to be the technique used to code the samples into
categories. Glaser favors a systematical and well defined approach for
the coding process while Strauss prefers a more dynamic approach
coding the elements as soon as they become visible. The second ap-
proach was described by Strauss and Corbin [SC90] in 1990.

Both methods have their benefits and downsides, however in this
analysis the Strauss and Corbin approach was chosen as a better fit-
ting research method. Due to the quite dynamic development ap-
proach and nescience about the different development processes, a
Grounded Theory approach was reviewed as a good scientific re-
search method to gather all the required data and use it as a base
research method.

2.2 qualitative content analysis

Research Question

Determination of Category Defi-
nition and Levels of Abstraction

Step by Step Formulation and Sub-
sumption of Inductive Categories

Revision of
Categories

Formative Check
of Reliability

Final Working
through the Content

Summative Check
of Reliability

Interpretation of Results

Figure 2.2: Step model of inductive category development in Qualitative
Content Analysis according to Mayring [May00; May83].

2.3 application in computer science 5

Another quite useful research method is the Qualitative Content
Analysis first published by Mayring [May83]. It is related to the pre-
vious mentioned Grounded Theory however differs from its theoreti-
cal approach. The main idea is to apply methods of Qualitative Con-
tent Analysis to the research question and transfer them to a step by
step interpretation which can be used for quantitative content anal-
ysis [May00]. This leads to a framework one can use to provide an
empirical, yet methodologically controlled analysis which follows a
previously established content analysis canon.

The centerpiece of this method is the finding and establishment of
categories in which the analyzed data can be inserted. It also con-
siders ways to carefully check and review the established categories.
This is also known as feedback loops. The establishment of categories
can be done either in an inductive or deductive way.

For this analysis it makes sense to use an inductive category devel-
opment, since the research method begins with the research question
and the ensuing determination of category definition. This defines
what aspects will be taken into account during the analysis. Follow-
ing this analysis further, possible categories may appear. Those cat-
egories can then be revised and checked if they are valid categories
for the analysis. Furthermore they can be split up or be set as sub-
categories of previously found categories. This step will be iterated
through the research data until a final interpretation and analysis can
be established.

The described Qualitative Content Analysis approach supplements
the Grounded Theory in a quite useful way, especially for comparing
different development models.

2.3 application in computer science

Qualitative research methods such as the above have their origin in
social sciences. However they also have their right of existence in com-
puter science as they provide excellent research methods and tools to
examine existing phenomena and domains besides others. As such
they are especially useful in areas like software engineering, com-
puter science education or computer science research methods. The
following list stands for an array of examples from different areas of
the computer science research field.

Hazzan et al. [Haz+06] for example discuss the use and plausibility
of qualitative research methods in computer science education. Simi-
larly Meerbaum-Salant, Armoni and Ben-Ari [MSABA10] explore dif-
ferent ways on how to learn computer science concepts with qualita-
tive analysis methods.

Armstrong [Arm06] uses qualitative research methods to discuss
the usage of object oriented programming vocabulary in different pa-
pers and books. The Grounded Theory is used by Perry, Porter and

2.4 software engineering comparison models 6

Votta [PPV00] to outline the strengths and weaknesses of empirical
research in software engineering. It is also used by Sarker, Lau and
Sahay [SLS01] for building and developing a process model of collab-
oration in virtual teams.

Finally also Bainbridge, Cunningham and Downie [BCD03] use the
Grounded Theory to analyze music queries. Kaplan and Maxwell
[KM94] use qualitative research methods for evaluating computer in-
formation systems.

This collective research effort shows the growing interest in us-
ing qualitative research methods, especially the Grounded Theory, in
computer science. However it shall be noted, that qualitative analysis
might not fit every research matter and is often better suited for meta
or process analysis.

2.4 software engineering comparison models

Research in software engineering has brought up many different soft-
ware engineering models which are suitable for different types of
environments. For a later comparison the most renowned and appo-
sitely models will be presented in the following.

2.4.1 Traditional Software Engineering Models

Many different traditional software engineering models exist in the
software engineering research field. The in the following described
Waterfall and Spiral model will stand as an example and be used for
the comparison later on.

Requirements

Analysis

Design

Implementation

Verification

Operations

Figure 2.3: The original Waterfall software engineering model with its im-
plementation steps according to Royce [Roy70].

2.4 software engineering comparison models 7

The first formal description of the Waterfall model was published
by Royce [Roy70] in 1970. It is interesting to note that Royce did not
use the term Waterfall to describe his model. He described it as a
model which is not appropriate for software engineering. However it
is still very popular and became widely known within the software
engineering field.

The model follows a sequential process from top to bottom which is
the reason of its name. The original sequential phases are from top to
bottom System Requirements, Software Requirements, Analysis, Pro-
gram Design, Coding, Testing and Operations. Furthermore several
modified Waterfall models exist, which change the single sequences
and domains.

Determine Objectives, Alternatives,
Constraints

Evaluate Alternatives, Identify,
Resolve Risks

Develop, Verify Next-Level ProductPlan Next Phase

Improvement

Prototype 3

Prototype 1

Prototype 2

Design

Concept

Requirements

Figure 2.4: The Spiral software engineering model with its typical four step
approach according to Boehm [Boe88].

Basili and Turner [BT75] wrote the first description of iterative en-
hancements inside a software engineering life cycle. In 1988, Boehm
[Boe88] created the Spiral model as a response to the Waterfall model.
The Spiral model has also been described as an evolutionary or itera-
tive development model. As the name suggest it is devised as a Spiral
including steps such as risk management, planning or determination
of objectives. It therefore combines the systematic approach of the
Waterfall model with an evolutionary development approach which
allows to incrementally enhance the product.

A typical cycle of the Spiral always starts with the specification of
goals and constraints of the upcoming cycle. It then proceeds to risk
management, which tries to identify risks or to provide alternatives.

2.4 software engineering comparison models 8

The defined goals are developed and tested as a next step. Lastly the
next cycle is planned.

2.4.2 Agile Software Engineering Models

Agile software engineering models base, in comparison to traditional
software engineering models, on incremental and iterative develop-
ment which are known to be quick and flexible to new requirements
or changes [Bec99]. The Extreme Programming and Scrum development
models stand as an example for this area.

Architectural Spike

User Stories

Release Planning

Spike

Iteration Acceptance Tests Small Releases

Requirements

Test Scenarios

Uncertain
Estimates

Confident
Estimates

New User Story

Bugs

Figure 2.5: The Extreme Programming software engineering model accord-
ing to Beck and Andres [BA99].

Extreme Programming (XP) is a software development model first
published by Beck [BA99] in 1999. Beck set his goal to improve exist-
ing software engineering models by improving the overall software
quality of a product and the responsiveness of changes required by
customers or other incorporated parties. The main differences to ex-
isting models are frequent releases and generally short development
cycles. It also includes other paradigms such as unit tests, flat man-
agement, simplicity, awareness of user requirement changes and fre-
quent communication with the customer. It has to be noted, that Beck
does not promote Extreme Programming as a finished concept, but
as a process, that existing teams can adapt to [Bec99].

SprintsPlanning & Sys-
tem Architecture Closure

WrapDevelop

Adjust Review

Figure 2.6: The Scrum software engineering model shown as methodology
according to Schwaber [Sch95].

The Scrum software engineering model was first referred by De-
Grace and Stahl [DS90] in 1990. However, not until 1995 the Scrum
development model was presented formally by Sutherland [Sut95]

2.4 software engineering comparison models 9

and Schwaber [Sch95]. Like the Extreme Programming development
model it is an incremental and iterative approach. The Scrum devel-
opment process usually contains three major roles which ensure the
process model is followed, represent the customer and the develop-
ment team. The basic idea behind Scrum are so called sprints. These
sprints are planned before they are executed and represent one devel-
opment cycle in which parts of the project will be developed. They
usually last between a week and one month. Another important part
of the model is the backlog that keeps track of which features are to
be done in which priority. These tools ensure the frugalness of new
requirements by customers or other constraints.

3
R E L AT E D W O R K

Although FOSS is a quite new research subject, many different find-
ings exist in this domain. The most relevant to this analysis will be
presented in this chapter.

3.1 project structure

Certainly one of the most relevant and most known studies of FOSS de-
velopment processes is “The Cathedral and the Bazaar” by Raymond
[Ray98]. It is an essay, based on the author’s observation which con-
trasts two software engineering models found in FOSS development.
The Cathedral model which is planned and developed by a small
group of architects and the Bazaar model in which the project gets
developed in a more chaotic way by a number of developers with no
real leader.

The research by Capiluppi and Michlmayr [CM07] draws on “The
Cathedral and the Bazaar” and the authors suggest that the Cathe-
dral and Bazaar model are not mutually exclusive, much more they
offer the assertion that especially bigger FOSS projects go through both
models starting with a Cathedral like development model and then
when becoming larger adopting the Bazaar model.

Godfrey and Tu [GT00] on the other hand try to compare FOSS

development processes with industrial and traditional management
techniques. Additionally they claim that especially big FOSS projects
have the ability to still grow at least linearly.

Kim [Kim03] takes a more general approach and tries to describe
the FOSS landscape as a whole, the demographics of developers and
the structure of FOSS projects. The conclusion is that in most FOSS

projects the development is actually led by a small group or single
developers which dissents a Bazaar like model. Interesting however
is the open approach on information sharing and easily accessible
collaboration.

Ogawa et al. [Oga+07] visualized the communication in several es-
tablished FOSS projects and came to the conclusion that a small group
of people were active in most of the discussion about development or
future plans.

Also Krishnamurthy [Kri02] makes a strong case for a different
development model. In a case study including 100 mature projects
the finding was that most projects were indeed lead by small groups
of people. Furthermore a Bazaar like discussion was often not hap-
pening at all. However the project age seemed to correlate with the

10

3.2 motivation 11

number of developers. In addition the number of project leaders de-
creased relatively to the size. Similar findings are proposed by Crow-
ston and Howison [CH05] who had analyzed over 120 projects. They
suggest however that bigger projects tend to decentralize structures
and projects do vary quite drastically in terms of communication
structure.

Based on a survey of over 2700 FOSS developers Ghosh [Gho05]
assumes a classification of FOSS projects which range from a hierar-
chical, connected structure to a flat non-connected structure. A sim-
ilar study which is limited to the Debian project was conducted by
Sadowski, Sadowski-Rasters and Duysters [SSRD08].

Finally however the research paper by Conway [Con68] contains
an insight that the organization of a software system is similar to the
group which designed and implemented the system.

3.2 motivation

Many research papers exist about motivation of developers or con-
tributers to FOSS projects. Lakhani and Hippel [LH02] for example
examined why people do provide free support to other developers
or users. They claim that most people do offer support because it re-
turns direct learning benefits. Lerner and Tirole [LT00] focus more on
developers.

Also Grazzini [Gra09] questioned why developers would work for
free and came to the conclusion that a complex interaction between
several technological, social and economic factors provide reasons for
a developer’s motivation.

Lakhani and Wolf [LW03] implemented a web based survey ana-
lyzing the answers of over 600 developers and over 287 projects. They
consider external motivational factors as implausible and propose
enjoyment-based intrinsic motivation as the main motivation for pro-
fessionals but also for volunteers. A similar study, but limited to the
Linux kernel was done by Hertel, Niedner and Herrmann [HNH03].
The findings were similar, however analyzed from a psychological
point of view.

3.3 software engineering

A descriptive analysis of FOSS development is offered by Roets, Min-
naar and Wright [RMW07]. The authors claim that no single software
development process exists. Yet they derive a software development
cycle based on different established software engineering processes.

Warsta and Abrahamsson [WA03] discuss whether agile methods
and FOSS development methods are similar. They have come to the
conclusion that there are similarities but also considerable distinc-
tions. They suggest however that both methods can learn from an-

3.4 case studies 12

other. A similar finding is provided by Koch [Koc04] who names the
biggest difference the co-location in agile methods, which of course
is not available in most FOSS projects.

Spinellis and Szyperski [SS04] make a strong case that FOSS affects
traditional software development since many FOSS projects do actu-
ally share pieces of code or use other projects for their development.
A concrete analysis of software engineering processes in the GNOME
project is offered by German [Ger03].

Taking a look on the evolution of software engineering processes
Scacchi [Sca06] provides a study claiming that development processes
evolve together with the community of a project and that their devel-
opment processes have great influence on companies who were used
to traditional software engineering processes.

3.4 case studies

In addition to the research studies, many case studies are relevant to
this analysis and focus on several FOSS projects. Mockus, Fielding and
Herbsleb [MFH02] analyze Apache and Mozilla and compare them
with several commercial projects. Dinh-Trong and Bieman [DTB04]
provide a case study on the FreeBSD project with a final comparison
with the Apache project.

Crowston et al. [Cro+04] analyzed several FOSS projects and offered
an analysis of several project success measures. Another case study
is provided by Magnusson [Mag10] who considered only the PHP
project. Similarly a case study of the GNOME project is provided
by Koch and Schneider [KS02]. Furthermore the Plone project was
analyzed in depth by Aspeli [Asp05].

Johnson [Joh01] provides a quite exhaustive process model of differ-
ent FOSS projects. He comes to the conclusion that most FOSS projects
follow an adaptive life cycle. Almost all analyzed projects have estab-
lished a flexible management model based on leadership, collabora-
tion and accountability.

A theoretical model of the structure of FOSS projects is offered by
Crowston et al. [Cro+05]. The proposed model focuses on software de-
velopment, distributed work and the structure of distributed teams.

4
M E T H O D O L O G Y

Based on the scientific research methods explained in chapter 2, this
chapter will give an explanation of the used methodology, research
choices as well as the approach to the different projects.

4.1 project selection

Since there is a huge number of FOSS projects to choose from, this
study focuses on well established projects with a quite long history
compared to others. To achieve a good selection of such projects sev-
eral criteria were established to ease the assortment. These criteria
allow a good selection and furthermore they should give a reason-
able sample within this analysis can produce valid results.

4.1.1 Category

There is a vast number of FOSS projects available. As of course not all
projects have the same goals in mind and provide similar software, it
makes sense to differentiate the projects by their goals and the type of
the resulting software. Examples are programming languages, desk-
top interfaces and other. Such a breakdown enables a direct compar-
ison of projects with similar goals as well as with other, not related
projects.

4.1.2 Popularity

In order to not choose small or not relatively unknown projects, the
popularity and usage of a project was taken into account. While it is
very difficult to represent this factor with absolute numbers, the num-
ber of active developers, approximations of installations and citations
in websites or magazines give a good quantitative representation.

4.1.3 Project Age

It seems that especially FOSS projects take some time to identify their
development workflow and structure their project accordingly. Fur-
thermore quite new projects often do not have such a structured de-
velopment workflow and it is seldom known if they still will be de-
veloped in the near future. As such a minimum project age was set to
ten years. To exclude older projects, which are only maintained and

13

4.1 project selection 14

do not follow a typical FOSS workflow the maximum project age was
set to 25 years.

4.1.4 Activity

The activity of a project is a very important measure to include only
actively developed projects which still fall into the above mentioned
time frame. The activity of a project however is difficult to measure,
but one can look at certain numbers published by most of the projects
which allow a good insight of how active the project is without rating
it quantitatively.

releases Regular or a high number of releases are a sign of a high
activity of FOSS projects. As such this represents an important criteria
for the selection.

downloads Some projects publish the number of accesses to their
code repositories or number of downloads of their releases. A big
number of course shows a high popularity and also a high activity
within the project.

number of commits There is a correlation between the number
of commits to a project’s repository and its activity. As such a large
number of commits also shows a high activity.

4.1.5 Community

The people behind a project are the driving force, directly lead and
develop a project. As such it makes sense to provide some criteria to
choose projects with a considerable number of developers.

communication In order to be able to examine development
workflows in a project, the communication methods have to be openly
accessible. Furthermore a project should have a good level of commu-
nication over diverse methods such as mailing lists, forums or chat
systems.

developers The number of developers of a project is a direct in-
dicator of the popularity of a project, its size and activity. As such a
large number of developers is wanted for this analysis, however it is
not always possible to get an accurate number.

conferences Meetings such as conferences, hackfests or other
are an indicator of an active and vital community. They represent
an important meeting point in most projects and as such are a good
criteria for the activity of projects.

4.2 final selection 15

foundations Bigger FOSS projects mostly have a foundation as
backer, which makes sure that the project stays independent from
companies or other. They usually appear after a few years of develop-
ment or a growing size of the project.

ongoing projects A lot of bigger FOSS projects hold or join
projects like Google’s Summer of Code program in which students
are invited to join the project for a few months. Such programs al-
most always lead to a larger community which is able to host such
events.

4.2 final selection

With the above explained criteria catalogue, ten FOSS projects were
chosen and analyzed. This leads to the following list of projects.

project origin category

Debian 1993 Operating System

Drupal 2001 Content Management System

Fedora 2002 Operating System

GNOME 1997 Desktop Environment

KDE 1996 Desktop Environment

MySQL/MariaDB 1997 Database Management System

PHP 1994 Programming Language

Plone 1999 Content Management System

PostgreSQL 1986 Database Management System

Python 1989 Programming Language

Table 4.1: List of analyzed FOSS projects.

A deliberate choice was made to only analyze the core parts of the
projects, even if they are built with a modular approach or consist of
several other parts. This choice was made to allow an easier compari-
son between the projects without any clutter they might bring in.

4.3 visualization of project data

For this analysis not only the publicly available project information
was analyzed, but also the code repositories of the projects. The rea-
son for this is to underly the made conclusions and to check the
analysis for validity. For FOSS projects all code repositories are pub-
licly available and often range back to the beginning of the project.
In some cases however data from the beginning is not available, be
it because of the lack of versioning control systems at that time or

4.3 visualization of project data 16

migrations of version control systems. In other cases the code was
split into several different code repositories, which made it harder to
combine the given data. With those two points in mind, all software
repositories were downloaded and prepared for automatic analysis.
This produced several graphs which will be explained below.

4.3.1 Commits by Author

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

Time

#
C

om
m

it
s

Guido van Rossum Fred Drake Georg Brandl
Benjamin Peterson Raymond Hettinger Jack Jansen

Figure 4.1: A graph displaying the six most active developers with their
monthly commit number with data from the Python project.

The above graph shows the six most active developers of a project
with their over time commits per month. It quickly allows to see the
involvement of certain people in the project and their activity on the
development side of the project. In this case for example the Python
project leader Guido van Rossum diminished his activity from 2004

on in comparison to other developers. This could mean two things,
first a person could have left a project or, which is the case in the
Python project, the person is busy in other parts of the project.

For the generation of this graph all related software repositories
were analyzed in relation to each developer with the most commits.
The first six were then chosen and their monthly commit count was
analyzed from the projects’ inception (if available) until the end of
the analysis. The monthly number was then plotted and a curve was
interpolated between these points. To smooth the curve and to allow
an easier understanding of the graph each second month was left out
and interpolated over the other points.

4.3 visualization of project data 17

4.3.2 Commits by Year

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

96
6 2,

16
6

7,
53

8

16
,5

79

15
,2

08

15
,2

01

14
,2

19

11
,0

06

11
,9

03 15
,1

54

26
,1

59

29
,6

60

29
,9

47

26
,0

89

15
,5

78

Time

#
C

om
m

it
s

Figure 4.2: A graph displaying the number of commits per year with data
from the KDE project.

The above graph shows the number of total commits per year. Most
projects have a steadily increasing number over the years. In some
cases like the above there is a quite large leap. In the above case this
can be explained with the development of a new major KDE release.

The graph was generated counting all commits per year from in-
ception till the end of the analysis. It is interesting to note that this
graph often matches up with other graphs in the same project, such
as the commits by month or the authors by month graphs.

4.3.3 Time Based View

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

Figure 4.3: A punchcard graph showing when commits usually occur with
data from the GNOME project.

This graph shows all commits from inception till the end of the
analysis in form of a circle with the related day and time combina-

4.3 visualization of project data 18

tion. A bigger circle represents more commits at the given day/time
combinations. In the below example the most busy day was Monday
between 4 pm and 12 pm. This can be easily explained with the fact
that the GNOME project usually does new releases on Monday. Fur-
thermore such a graph shows the developers usual working hours.
This example also shows that many developers tend to have a main
job in a company, as usual office hours match up with the day and
time combinations. This is enforced by a quite low number of com-
mits on Saturday and Sunday in comparison to workdays.

The graph was generated counting the commits depending on their
day and time. Of course local time was converted to Coordinated Uni-
versal Time (UTC) to guarantee comparable results. The circles were
then drawn on the graph using different sizes and transparency de-
pending on the number of commits on a single day and time combi-
nation. The size and transparency is a relative value ranging from the
day and time combination with the least number of commits to the
day and time combination with most commits. All other circles were
then drawn using a value between this range.

4.3.4 Commits by Month

2000 2002 2004 2006 2008 2010 2012

0

50

100

150

200

250

300

350

Time

#
C

om
m

it
s

Commits Average

Figure 4.4: A graph showing the number of commits per month with data
from the Drupal project.

The above graph shows the commits per month correlation from
inception till the end of this analysis. It is quite similar to the yearly
overview mentioned before, however gives a better insight into the
monthly development. An increase of commits always shows a cer-

4.3 visualization of project data 19

tain degree of interest of people for the project. It can of course mean
that more people are willing to contribute to a certain project, but
also that the existing developers are producing more code. This is
especially interesting when comparing it with the following graph.
In the above example there is a peak between 2008 and 2009 which
can be explained with the upcoming Drupal 7 release development
at that time.

The graph was generated counting the commits from inception till
the end of this analysis and plotting that number for each month. The
blue line then was interpolated between those points. The red line on
the other hand stands for the average value over a year and is useful
to identify the project’s direction.

4.3.5 Authors by Month

1998 2000 2002 2004 2006 2008 2010 2012

0

10

20

30

40

50

60

Time

#
A

ut
ho

rs

Authors Average

Figure 4.5: A graph showing the number of distinct authors per month with
data from the PHP project.

The above graph shows the number of distinct authors per month
from inception till the end of analysis. It gives a good impression on
how many people were responsible for the amount of work done in
a certain time period, which can be seen in the previous graphs. The
above example shows a decrease of authors meaning either that devel-
opers left the project or that developers reduced their time working
on the project.

The graph was generated counting all distinct authors per month
from inception till the end of analysis. As this is always in whole num-
bers, the graph was generated using a so called constant plot. The red

4.3 visualization of project data 20

line on the other hand is an average value over one year which is inter-
polated between those points. In case of authors with different email
addresses or slightly different names in the single commits, they were
combined if it was the same person.

5
D E V E L O P M E N T P R O C E S S A N A LY S I S

In the following chapter the chosen FOSS projects will be analyzed in
depth. After a thorough analysis of each project, a project analysis cat-
alogue will be proposed. This first part of this chapter makes heavy
use of the Grounded Theory research method presented earlier. The
second part of this chapter will then use the proposed catalogue to an-
alyze further projects. This is a good use case for Mayring’s research
method for Qualitative Content Analysis described in chapter 2.

5.1 drupal project analysis

Drupal is a Content Management System (CMS) and a Content Man-
agement Framework (CMF). It is written in the PHP programming lan-
guage and licensed under the GNU General Public License (GNU GPL).
Drupal is used for a wide range of capabilities such as blogs, com-
pany and political websites, communities and is directed to be a
widely spread CMS [Dru#5]. Drupal is also known as Drupal Core in-
side the Community and contains the base functionality of the CMS.
However it can be extended through numerous modules. In the fol-
lowing though only Drupal Core will be analyzed.

5.1.1 History

The first version of Drupal was released in 2001 by Dries Buytaert
[Dru#4]. Originally the software provided a black board like directory.
Quickly however a fully-fledged CMS emerged out of the initial ver-
sion. The name originates from the dutch word druppel which trans-
lated means drop. Especially in the last years it experienced a wide
distribution and is used for at least 1.7 % of all websites worldwide
and holds a market share of 6.2 % [Bui; W3T#1].

5.1.2 Community

The Drupal project has a large user and developer community around
the world. According to own statements, over 250.000 users were reg-
istered on drupal.org in August 2011. About 1200 of those were ad-
ditionally listed as developers, whereas the number could be a bit
higher [Buy11].

Twice a year the community holds a conference under the name
Drupal Conference or DrupalCon. To alleviate the journey of the atten-

21

drupal.org

5.1 drupal project analysis 22

2000 2002 2004 2006 2008 2010 2012
0

20

40

60

80

100

120

140

160

180

200

Time

#
C

om
m

it
s

Dries Buytaert Angie Byron Steven Wittens
Gábor Hojtsy Neil Drumm Kjartan Mannes

Figure 5.1: Monthly activity of the most active Drupal Core developers. It
clearly shows the involvement of the founder Dries Buytaert. In
recent years however the roles of Gábor Hojtsy and Angie Byron
became more important.

dees the conference takes place alternatively in Europe and North
America.

The communication possibilities sprawl from forums on drupal.

org, mailing lists and discussion groups on groups.drupal.org. Ad-
ditionally a wide range of Internet Relay Chat (IRC) channels for dif-
ferent aspects of the Drupal project are being used.

Next to the last-mentioned classification of users and developers,
people can – provided that they are working on Drupal Core – be
classified into one of the following categories [Dru#1].

core contributor All developers who bring in code or docu-
mentation for Drupal Core are known as core contributors. All modi-
fication proposals are checked by another core committer in a review
process and are then either accepted or dropped.

maintainer While maintainers often aren’t involved in the de-
cision making progress, they have the liability of small portions of
Drupal Core. Most of them are particular core modules or technical
domains such as JavaScript. The assignment happens over Dries Buy-
taert, whom interested developers can approach or will be invited to
join.

drupal.org
drupal.org
groups.drupal.org

5.1 drupal project analysis 23

venue date attendees

Munich, Germany August 2012 N/A

Denver, USA March 2012 N/A

London, England August 2011 1751

Chicago, USA March 2011 3000

Kopenhagen, Denmark August 2010 1200

San Francisco, USA April 2010 3000

Paris, France September 2009 850

Washington D.C., USA March 2009 1400

Szeged, Hungary August 2008 500

Boston, USA March 2008 850

Barcelona, Spain September 2007 450

Sunnyvale, USA March 2007 ~300

Brussels, Belgium September 2006 150

Vancouver, Canada February 2006 ~150

Amsterdam, Netherlands October 2005 ~100

Portland, USA August 2005 100

Antwerpen, Belgium February 2005 ~50

Table 5.1: Previous and planned DrupalCon events [Wal11].

core committer Only few people have write access to the Dru-
pal Core repository. They are known as core committer and look
through code changes and propositions and decide about patch ac-
ceptances. At this juncture there is a distinction between permanent
core committers and branch maintainers.

permanent core committer Dries Buytaert is currently the
only permanent core committer.

branch maintainer Next to Dries Buytaert they are in charge
of maintaining a particular Drupal version.

• Gerhard Killesreiter for Drupal 4.7.x.

• Neil Drumm for Drupal 5.x.

• Gábor Hojtsy for Drupal 6.x.

• Angie Byron for Drupal 7.x.

founder and lead developer Dries Buytaert, the founder of
the Drupal project, holds the role of the project leader and therefore
decides the project’s direction. Furthermore he is the main decision
maker. Though in some cases he also gives away his decision control
to a trusted person.

5.1 drupal project analysis 24

2000 2002 2004 2006 2008 2010 2012

0

500

1,000

1,500

2,000

2,500

3,000

29
5

99
9

57
7

1,
14

3

1,
26

2

1,
40

0

2,
04

7

1,
80

6

1,
62

3

2,
69

6

2,
70

3

1,
70

1

Time

#
C

om
m

it
s

Figure 5.2: Yearly overview of commits to Drupal Core. The peak in 2009

and 2010 is most likely related to the development of Drupal 7

which was released in early 2011.

5.1.3 Release Process

For releases, Drupal uses a version naming with two numbers since
Drupal 5. The numbers stand for major and minor versions [Dru#6].
New major releases are quite scarce and will get released every few
years. They are planned for a long time in advance, often with incom-
patible changes. Before Drupal 5 a three numbers versioning scheme
was used.

While the time periods between single Drupal Core major releases
are not bound, the time until a stable release is divided into single
phases [Dru#3]. The length of a single phase is not fixated either,
but is limited by a range of factors which will be explained in the
following.

code thaw After each major release a new branch will be created
in the Drupal Core repository. In this phase all new features and
modifications can be discussed and added. No restrictions apply.

2000 2002 2004 2006 2008 2010 2012

1.0.0

2.0.0

3.0.0

4.0.0

4.1.0

4.2.0

4.3.0

4.4.0

4.5.0

4.6.0 4.7.0

5.0 6.0 7.0

Figure 5.3: Major releases of Drupal.

5.1 drupal project analysis 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

Figure 5.4: Time based view on commits of core contributors. There seems to
be a tendency to evenings during the week and Sundays which
could be interpreted with a more community driven project.

code slush This phase was added to the Drupal 7 release cycle
to restrict the time between major releases. Important features will
be elaborated and handled with the help of so called initiatives. In
this phase no new features except the chosen initiatives are allowed.
Though changes will be accepted to fix errors or add missing func-
tionality.

At the end of this phase, the Application Programming Interface
(API) freeze will be declared. At this point in time, the API can only be
changed when critical errors are found and have to be corrected.

polish phase In this phase Drupal Core will be polished and the
last enhancements on performance, accessibility, documentation and
other are brought in. At the end of the phase string freeze and user
interface freeze will be put in place.

Code Thaw

Code Slush

Polish

Release

Code Freeze

API Freeze
Feature Freeze

UI Freeze
String Freeze
Alpha

Beta
Release Candidate
Final Release

Figure 5.5: Drupal release process phases.

release phase Lastly, several alpha, beta, release candidates and
in the long run the stable version will be released. The first release
candidate is published once there are no more known critical bugs.

5.1 drupal project analysis 26

Additional release candidates are released if new critical bugs appear,
otherwise the final release is published.

2000 2002 2004 2006 2008 2010 2012

0

50

100

150

200

250

300

350

Time

#
C

om
m

it
s

Commits Average

Figure 5.6: Amount of commits per month of core contributors. Again, the
peak in 2009 and 2010 seems to match the development of Dru-
pal 7. The subsequent low is then related to the planning phase
of Drupal 8.

5.1.4 Development

The Drupal project changed its development workflow for the up-
coming Drupal 8 release. Until then, the development was mostly
driven through the issue queues, which is a bug tracking system on
drupal.org. While it is still used for communication, bugs and new
features, the development process features a number of core initia-
tives which will stand for a major area of Drupal [Dru#2]. Each initia-
tive has one or two initiative owners who lead the development and
coordinate the initiative while working closely with Dries Buytaert.

Initiatives can be created by any Drupal developer, however Dries
Buytaert choses which initiative will be followed for the next major
release. He also choses the initiative leaders and remains in close
contact with them. Furthermore each initiative defines a small set of
goals which should be reached by the time of the next major release.
For the Drupal 8 release, the following initiatives will be followed:

• Configuration Management

• Web Services Context Core Initiative

• Design 4 Drupal

drupal.org

5.2 plone project analysis 27

• Drupal 8 Multi-Lingual Initiative

• HTML5

• Mobile

2000 2002 2004 2006 2008 2010 2012

0

1

2

3

4

5

6

Time

#
A

ut
ho

rs

Authors Average

Figure 5.7: Amount of distinct authors of Drupal Core over time. Due to
their policy, only certain developers are allowed to commit to
the repository. The project recently started adding author names
to the commits.

5.2 plone project analysis

Plone is a CMS built on top of the Zope application server which
provides the core functionality layer for the project [Asp05; Plo#6;
Plo#13]. It is mostly written in Python and available for all major plat-
forms. Plone is licensed under the GNU GPL and according to Ohloh,
Plone is one of the top 2 % of FOSS projects worldwide [Bla11]. Fur-
thermore it is used by organizations and companies such as NASA,
Amnesty International, Nokia and others. It can be used for a wide
range of websites such as internal websites, blogs, groupware and
other. The project is known for its very good security track record,
high usability, extensibility and flexibility. The project is split into
Plone Core and Collective. This analysis however will only focus on
Plone Core as it is the heart of the project.

5.2 plone project analysis 28

5.2.1 History

In 1999, Alexander Limi and Alan Runyan started the Plone Project
creating a usability layer on top of the application server and CMF

Zope [Asp05; Plo#6]. The first version was then released two years
later in 2001 [Plo#12]. It was quickly picked up by many people
and a community around the Plone project began to emerge. In 2004

Plone 2.0 was released which made Plone more configurable and en-
hanced the possibility of adding modules to the CMS. At the same
time, the Plone foundation was established, which to this day has
ownership rights over the Plone project and trademarks. The next
major Plone version was released in 2007 under the name Plone 3.
The currently used and developed Plone 4 was released in 2010.

5.2.2 Community

The Plone project consists of a large user and developer community.
While there are about 300 people working on Plone Core, there is a
much bigger community working on Plone Collective projects [Asp05;
Bla11; Plo#1].

Most of the communication is done through the Plone mailing lists
whereas the plone-developers mailing list is in place to discuss the de-
velopment and future of Plone Core. There are also lots of other mail-
ing lists available for almost every aspect concerning the project. How-
ever, there are also large forums and IRC channels available where one
can give and find support.

The first Plone conference was held in New Orleans in 2003 [Plo#5].
Since then the yearly Plone conference attracted a growing number of
attendees every year and was held in Europe as well as in the United
States.

The Plone community is very eager to organize so called sprints
[Plo#11]. A sprint is a focused development session where develop-
ers meet in person and try to enhance a certain part of the Plone
project. It normally lasts about three to five days in which one person
leads the session and tracks the activities and the development. Many
sprints take place worldwide every year.

Due to the large group of Plone developers, the project is split into
several teams, where each team is responsible for a specific part of
the Plone project such as release management, development, security,
infrastructure, usability and more [Plo#7; Plo#9; Plo#8; Plo#2].

core developer This role is defined to have access to the Plone
Core codebase. To become a member of this role one must have es-
tablished a track record of contributions to the Plone project. This is
not limited to code, but can also be usability enhancements or other
contributions. It is also highly recommended to attend a conference

5.2 plone project analysis 29

2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

Time

#
C

om
m

it
s

Hanno Schlichting Martin Aspeli Alexander Limi
David Glick Wichert Akkerman Eric Steele

Figure 5.8: Monthly activity of the most active Plone developers. While the
founder Alexander Limi was very active in the inception phase,
Hanno Schlichting and Eric Steele seem to drive the project much
more in present time.

or sprint in order to become acquainted with the other developers. Fi-
nally one has to request an account. Informally, Godefroid Chapelle,
Hanno Schlichting and Martin Aspeli serve as gatekeepers for this
role. Currently this role has 375 members.

framework team This team is responsible for the decision of
which code gets into a Plone release. They do this by recommending
code for inclusion to the Plone release manager team. They are how-
ever not responsible for adding new features or patching bugs, they
only drive the Plone Improvement Proposal (PLIP) process. By accept-
ing or rejecting PLIPs they gather information from the community
and finally recommend them to the release manager. Furthermore all
significant changes must go through the framework team. The team
consists of a small group of people and are chosen arbitrarily. Cur-
rently the team consists of 16 people.

release managers Each major Plone release is done by a release
manager who is responsible for continuing releases in the specific se-
ries. The release manager gets named by the Plone foundation board
and is a paid position [Plo04]. The manager works closely with the
framework team to ensure improvement and continuing development
of Plone. The current release managers are Alec Mitchell, Eric Steele,
Hanno Schlichting, Stefan H. Holek, Wichert Akkerman, Alan Hoey.

5.2 plone project analysis 30

2002 2004 2006 2008 2010 2012

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1,
24

2

3,
19

3

3,
39

8 4,
19

4

4,
03

8

6,
25

4

4,
08

8

7,
48

2

8,
83

8

7,
78

4

Time

#
C

om
m

it
s

Figure 5.9: Yearly overview of commits to Plone. The steady increase of com-
mits is interesting to note with a boost before the Plone 4 release
in late 2010.

plone founders The Plone founders are Alexander Limi and
Alan Runyan. While they do not have any further rights, both still
have a powerful voice in the community and help with decisions
where the community is not able to take one. In some cases they also
take a decision by themselves, overruling the community’s proposal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

Figure 5.10: Time based view on commits of contributors. The times seem
to be equally distributed between office hours and evenings or
weekends, which could be interpreted with an equal amount of
employed and volunteered commits.

5.2.3 Release Process

Since the Plone 4.2 release in 2011 the Plone project changed it’s re-
lease process in order to implement a fixed release cycle [Plo11]. Now
every six months, there will be a new Plone release. Additionally the
Plone project sets a feature freeze date two months before the release

5.2 plone project analysis 31

at which no new PLIP will get accepted unless it has been completely
reviewed by that date.

The Plone project uses a major, minor and micro versioning scheme
[Plo#10; Plo#1]. Major releases break backwards compatibility but
may provide an upgrade path. Minor or feature releases normally
provide new features and bug fixes but retain backwards compatibil-
ity. Micro releases are only bug fix releases and do not contain new
features. Additionally, each major and minor release has several pre-
ceding releases. Alpha releases are basically snapshots of the current
development process. Once a beta release gets published, no new fea-
ture is allowed to enter the codebase. Only bug fixes and non-invasive
changes are allowed. A release candidate is published afterwards and
only if problems are found, further release candidates follow. If no
show stopper bug comes up, the last release candidate is considered
to be the final version and gets published on the previously set re-
lease date. After that date only bug fix releases are allowed for this
series. The development starts with the next major or minor release.

2000 2002 2004 2006 2008 2010 2012

0.1

0.4

0.5

0.7

0.9 1.0 2.0 2.1 2.5 3.0 3.1 3.2

3.3

4.0 4.1

Figure 5.11: Major and feature releases of Plone.

5.2.4 Development

Most of the development of the Plone project is handled through
the mailing list and bug trackers of the project [Plo#2; Plo#1]. Minor
patches and contributions often get committed directly to the repos-
itory while bigger changes and features have to go through the PLIP

process [Plo#4; Plo#1; Plo#3]. This process is based on the Python En-
hancement Proposal process. New features and big changes have to
be written down in a PLIP which contains a description of the feature
or problem, a solution to it and a working implementation. A PLIP is
always owned by at least one person who is fully responsible for it.

A PLIP mostly derives from a discussion on the plone-developers mail-
ing list. The community will give feedback on the idea and possible
solutions. If the feedback can be considered positive, the creator of
the idea will be asked to write a PLIP. However one can also start
directly with the creation of a PLIP and get the community feedback
during the upcoming phases.

5.2 plone project analysis 32

2002 2004 2006 2008 2010 2012

0

200

400

600

800

1,000

1,200

1,400

Time

#
C

om
m

it
s

Commits Average

Figure 5.12: Amount of commits per month of core contributors. The two
peaks seem to refer to the development of Plone 3 and Plone 4.

The author of the PLIP is always considered as the main contact
point for future improvements or discussions. From here the PLIP life
cycle begins [Plo#3].

draft A PLIP always starts as draft, where the author summarizes
his ideas and tries to come up with a solution. It is not ready for a
proposal but the discussion already starts and new solutions or ideas
find their way into the PLIP.

proposal Once the author thinks that the PLIP is finished and will
get accepted they can submit it at any time. The framework team will
then comment on any newly submitted or updated PLIP. It will be
reviewed and if the framework team decides that the PLIP won’t get
accepted for Plone Core, the author is encouraged to improve the PLIP

and resubmit it at any later point in time.

Draft

Withdrawn

Proposal

Approved

Rejected

Review

Final Review

Accepted

Figure 5.13: Possible paths of the status of Plone Improvement Proposals.

5.2 plone project analysis 33

2002 2004 2006 2008 2010 2012

0

10

20

30

40

50

60

70

Time

#
A

ut
ho

rs

Authors Average

Figure 5.14: Amount of distinct authors of Plone Core over time. The devel-
opment of Plone 4 obviously did attract new developers.

approved As soon as the PLIP is approved, the author of the PLIP

starts with the development of the PLIP. A member of the framework
team will get assigned to the PLIP and assists the author with any
questions and help they might need.

rejected If the PLIP was rejected by the framework team, in most
cases the PLIP gets implemented as an amendment and later submit-
ted again as an improved PLIP.

review Once the development is complete, the author of the PLIP

can forward the implementation to the framework team. Two mem-
bers will then review the proposal along with two additional devel-
opers chosen by the author. The reviews have to be in written form
and publicly available to a all members of the community. This phase
should not take longer than two weeks and all critical bugs have to
be fixed before that. If there are too many changes for the available
time, the PLIP will be pushed to the next release.

final review Once all major concerns have been solved, the orig-
inal reviewers will review the PLIP one more time and confirm that
all issues have been resolved and no new issues have been found. If
issues have been found, it goes back to the Review state.

accepted If the PLIP passes the Final Review phase, it can be
merged and will be available in the next Plone release.

5.3 python project analysis 34

withdrawn An author can of course always decide to withdraw
the PLIP if they think, that the PLIP is no longer needed or obsolete.

5.3 python project analysis

Python is an object oriented and interpreted programming language
well known for its simplicity and easy to learn syntax [Pyt#6]. Li-
censed under the Python Software License [Pyt#4] it is available for all
major platforms. Python comes with an interpreter and an extensive
standard library. It supports many programming paradigms, such as
object oriented, imperative or functional programming styles. The ref-
erence implementation of the interpreter is called CPython, however,
there are other interpreters available as well. The subject of this anal-
ysis will be CPython.

5.3.1 History

The creator of Python, Guido van Rossum, conceived and imple-
mented Python around 1989 at the CWI Institute in the Netherlands
[Ven03]. Python was a successor to the ABC programming language,
which itself saw contributions from van Rossum in the eighties. The
name alludes to the British television series Monty Python’s Flying
Circus van Rossum was watching while creating the programming
language. He still is Python’s principal author and project leader and
therefore the project’s main decision maker.

Currently, there are two versions of Python available, both incom-
patible to each other. Python 2.0 was first released in 2000 and since
then evolved to the currently available Python 2.7 version. Python 3.0
however, was a major, backwards incompatible release, which was
published in 2008. It is the successor of the 2.x series and will replace
it completely in the near future.

Also, since the 2.x series, the Python project created a transparent
and community backed development process with van Rossum as its
leader.

5.3.2 Community

The Python project has a large user and developer community. Many
are working on the CPython interpreter and the standard library,
however there are also a lot of other current Python related projects,
such as advanced libraries.

The Python community is very eager to attend and offer opportu-
nities to meet in person. Therefore, one can frequently attend con-
ferences and workshops worldwide [Pyt#1]. The first conference was
PyCon in North America in 2003. However there are now many other
conferences, such as PyCon DE, EuroPython or SciPy.

5.3 python project analysis 35

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

Time

#
C

om
m

it
s

Guido van Rossum Fred Drake Georg Brandl
Benjamin Peterson Raymond Hettinger Jack Jansen

Figure 5.15: Monthly activity of the most active CPython developers. The
project leader Guido van Rossum appears to be busy with his
position as other developers such as Georg Brandl are much
more active.

The communication inside the Python project mostly takes place
through several mailing lists [Pyt#3]. Each mailing list stands for a
certain topic, for example the python-dev mailing list which is the
main communication channel for Python development. The python-
ideas mailing list on the other hand is for future ideas and goals of
the Python project. There are of course other communication methods
available, such as several IRC channels and developer’s blogs.

Next to the already mentioned users and developers of Python
people will be classified into several categories depending on how
strongly they are involved in the development of Python [Pyt#5].

developer One is able to gain the developer role when they have
consistently shown contributions to Python. There is however no set
rule of how many patches or resolved issues are needed. It is possible
to request the developer role by asking any other person, who already
has the developer role. They then will decide if the requester is ready
to gain the additional privileges. The enquired person will sequently
act as a mentor for the requester.

core developer The way to become a core developer is quite
similar to the developer role above. One must have consistently con-
tributed patches, which meet a certain quality standard. Then nor-
mally a developer will be offered the chance to become a core de-

5.3 python project analysis 36

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

0

2,000

4,000

6,000

8,000

10,000

10
5 44

5 62
7

28
9 58

2 1,
25

6
1,

54
8 2,
16

6 2,
72

2
1,

90
0

4,
04

1
5,

92
5

5,
38

6
4,

31
1

2,
99

2
1,

86
9

4,
37

3
3,

87
0

5,
99

6
7,

64
9

9,
18

6
6,

98
1

Time

#
C

om
m

it
s

Figure 5.16: Yearly overview of commits to CPython. The two peaks ap-
pear to match the releases of the major releases Python 2 and
Python 3.

veloper. The reference person will also act as a mentor for the new
core developer. Also, the core developer group will watch if the qual-
ity of the contributed patches was met and the development process
understood.

expert Each core developer has the possibility to become an ex-
pert in a certain area of the Python project. An expert is the main-
tainer of his field of interest and therefore responsible for changes
and new features to those areas. All issues, help requests and deci-
sions will be forwarded to the expert. Experts may also be asked to
decide on features or bugs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

Figure 5.17: Time based view on commits of core contributors. It is interest-
ing to note that almost all commits happen during the week,
however later than usual office hours.

benevolent dictator for life (bdfl) Guido van Rossum is
the only person who holds this title. As the leader of the Python

5.3 python project analysis 37

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

0

200

400

600

800

1,000

Time

#
C

om
m

it
s

Commits Average

Figure 5.18: Amount of commits per month of core contributors. Again
this matches with the development phases of Python 2 and
Python 3.

project, he has the privilege to outvote and overrule any decision
made by an expert or core developer. However his decisions should
always be in favour of the project, as the word benevolent states.

5.3.3 Release Process

For releases, Python uses a version naming with three numbers. The
numbers stand for major, minor and micro versions [Pyt#2; WR01].
New major releases are extremely scarce. They are planned for a long
time in advance, often with incompatible changes. An example for
such a major release is Python 3.0. Minor releases are feature releases
with no incompatibilities between its predecessors. Roughly, they get
published every 18 months. Micro releases are bug fix releases and
get promulgated every six months, although they can be released in
shorter time periods too. Besides, each release is proceeded by several
alpha, beta and release candidate releases which are testing releases.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

0.9 1.0

1.1

1.2

1.3

1.4 1.5 1.6

2.0

2.1 2.2 2.3 2.4 2.5 2.6

3.0

3.1 3.2

Figure 5.19: Major releases of Python.

5.3 python project analysis 38

PEP: 8

Title: Style Guide for Python Code

Version: 00f8e3bb1197

Last-Modified: 2011-06-13 12:48:33 -0400 (Mon, 13 Jun 2011)

Author: Guido van Rossum <guido at python.org>, Barry Warsaw <barry at python.org>

Status: Active

Type: Process

Created: 05-Jul-2001

Post-History: 05-Jul-2001

Introduction
This document gives coding conventions for the Python code comprising the

standard library in the main Python distribution. Please see the

companion informational PEP describing style guidelines for the C code in

the C implementation of Python[1].

This document was adapted from Guido's original Python Style Guide

essay[2], with some additions from Barry's style guide[5]. Where there's

conflict, Guido's style rules for the purposes of this PEP. This PEP may

still be incomplete (in fact, it may never be finished <wink>).

A Foolish Consistency is the Hobgoblin of Little Minds
One of Guido's key insights is that code is read much more often than it

is written. The guidelines provided here are intended to improve the

readability of code and make it consistent across the wide spectrum of

Python code. As PEP 20 [6] says, "Readability counts".

A style guide is about consistency. Consistency with this style guide is

important. Consistency within a project is more important. Consistency

within one module or function is most important.

Figure 5.20: Excerpt from PEP 8: Style Guide for Python Code.

5.3.4 Development

Since Python 2.0, the Python community changed their development
process towards a more open and transparent approach. For each
patch, the Python community can vote for or against it. They can vote
+1, +0, -0, -1, whereas +1 and -1 mean acceptance or rejection and +0

and -0 mean an indifferent decision with a slight positive or negative
slant [War02]. The voting itself takes place on either the python-dev
mailing list or will get announced on the python-announce mailing
list. This voting however is completely deliberative and Guido van
Rossum can still approve or reject a patch even if the voting disagrees
with his decision.

The development process is highly dependent on the so called
Python Enhancement Proposal (PEP) [WHG00]. Loosely modelled on
the Internet Request for Comments process, they are design docu-
ments which describe either a proposed feature, a process or just
provide information. They are continually discussed in the commu-
nity and revised until the community reaches a consensus. PEPs can
then either be approved or rejected. They are the primary way to pro-
pose new features and on approval are finalized with the commit of
a patch.

The Python project defines three types of PEPs.

5.3 python project analysis 39

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

0

5

10

15

20

25

30

35

40

Time

#
A

ut
ho

rs

Authors Average

Figure 5.21: Amount of distinct authors of CPython over time. Python 2

seemed to provide a major reason for developers to join.

1. standards track pep The most common form of PEPs de-
scribes a feature proposal for the Python language. They always
consist of a design document and a reference implementation.

2. informational pep Unlike the Standards Track PEP, the In-
formational PEP does not propose a new feature. It provides gen-
eral guidelines or information about a certain issue of Python.
However it does not necessarily have to reach consensus inside
the Python community and so one is free to ignore Informa-
tional PEPs.

3. process pep This kind of PEP is quite like the Standards Track
PEP, except that it applies to other areas than the Python lan-
guage and describes processes around Python. For example any
guidelines, decision making processes, development workflows
and other are mostly Process PEPs. Additionally any PEPs which
describe other PEPs, for example how a PEP should look like, will
be defined as Process PEPs.

The PEP process begins with a feature proposal for Python. While
all bigger proposals require a PEP, the Python project suggests to sub-
mit small changes directly as a patch submission. A PEP always has
one or several authors, who have the responsibility for it. They will
begin by submitting the PEP to the Python project. More precisely it
should be presented to the python-ideas mailing list and subsequently
sent to the PEP editors. The PEP editors will assign a number and a cat-

5.3 python project analysis 40

egory as mentioned above. Additionally, new PEPs always start with
the Draft status. From there, the PEP workflow begins.

draft This is the default state of any new PEP on submission, as
described above.

deferred A PEP Editor can always, instead of assigning the Draft
status, defer a PEP. Reasons for a deferral could be duplication, being
poorly written, lack of motivation by the author or not being in line
with the Python philosophy.

accepted A PEP will be able to get this status assigned, if all PEP

criteria are matched. This includes a precise formulation of the PEP,
not breaking backwards compatibility and finally be accepted by the
Benevolent Dictator For Life (BDFL). However the criteria are not fully
binding and a PEP just has to be accepted by the BDFL.

rejected At this stage a PEP can still be rejected. Mostly this status
gets assigned, if it turns out that the original idea did not fit the
Python project. The reject stage is just an option to drop a PEP, after
it was accepted or not deferred.

withdrawn A PEP can also always be withdrawn by the author.
This could help if an author does not want to work on a PEP anymore,
for example because there is a better solution available.

final Once a PEP has been accepted and has a reference imple-
mentation available, it can get the status Final by the BDFL.

replaced Mostly for Informational PEPs, subsequent versions can
replace a PEP. In this case the original PEP would be marked as Re-
placed and superseded by the new PEP.

active Informational and Process PEPs can also be marked as Ac-
tive, if they will never be completed. For example PEP 1 [WHG00],
which describes the process of PEPs has its status set to Active, as it is
continually improved and adapted to new workflows.

Draft

Deferred

Accepted

Rejected

Withdrawn

Final

Replaced

Active

Figure 5.22: Possible paths of the status of Python Enhancement Proposals.

5.4 php project analysis 41

5.4 php project analysis

PHP is a server side, interpreted programming language designed
for web applications and development [PHP#9]. As such, it requires
a web server with a connected PHP installation. However it can also
be used with a command line interface. It is widely available for all
major platforms and is licensed under the PHP License [PHP#4]. It
is worth noticing, that while it is a Free Software license, it is incom-
patible to the widely used GNU GPL. PHP comes with an extensive
standard library and supports many programming paradigms, such
as object oriented, imperative or procedural programming styles. The
abbreviation PHP originally stood for Personal Home Page [PHP#2].
With PHP version 3, the project changed its name to PHP Hypertext
Processor. PHP is a very popular programming language for web de-
velopment and featuring a large number of websites [W3T#2; PHP07].

5.4.1 History

In 1994, Rasmus Lerdorf created the first version of PHP for his own
website, naming the program Personal Home Page Tools [PHP#2].
He published the bundle one year later, after rewriting the original
version. That also included the first name change to Forms Interpreter
(FI) and then to Personal Home Page Construction Kit the same year.
At that time, PHP could be considered as an advanced programming
interface.

However, it received another makeover in 1996, combining the two
previous names to PHP/FI. This time, PHP truly began to evolve to
a full featured programming language. It included several modules
for database or browser interaction. This version was also known as
PHP/FI 2.0. Following a popularity boom in 1997 and 1998 it reached
its limitations due to the design of the project and by being almost
solely developed by Lerdorf.

In 1997 Andi Gutmans and Zeev Suraski rewrote the PHP inter-
preter and approached Lerdorf discussing the problems PHP had. To-
gether, they rewrote and redesigned the language and also changed
the name to PHP Hypertext Processor. Version 3.0 of PHP was then
released in 1998 and replaced PHP/FI 2.0 completely. One of the most
important features of the new approach was to provide an interface
for modules, which can be used directly from the programming lan-
guage.

The design of the language was changed further in 1998 improving
performance and the modularity of the codebase. The new engine
was called Zend Engine and provided the core of PHP 4.0, which
was released in 2000.

Four years later, PHP 5 was released featuring the successor Zend
Engine 2.0. This release was incompatible to the previous 4.0 version

5.4 php project analysis 42

2000 2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

Time

#
C

om
m

it
s

Ilia Alshanetsky Marcus Börger Antony Dovgal
Jani Taskinen Pierre-Alain Joye Dmitry Stogov

Figure 5.23: Monthly activity of the most active PHP developers. The climax
of development in 2007 stalled and the most active developers
appear to lose interest since then.

and a large initiative was planned and executed to promote the tran-
sition from PHP 4 to PHP 5.

5.4.2 Community

The PHP project consists of a large user and developer community
[Mag10]. Additionally to the PHP interpreter, there are many people
working on PHP extensions and components, which get distributed
alongside the standard interpreter.

The PHP community provides a large amount of conferences and
workshops to meet in person and work together on PHP. While the
International PHP Conference was the first of its kind in 2001 [PHP#3],
there are many opportunities to meet other PHP contributors. A lot
of local PHP User Groups exist and provide weekly or monthly meet-
ings and meet-ups such as workshops.

Most of the communication inside the PHP project takes place
through mailing lists [Mag10]. There exist mailing lists for almost
all aspects of the project, however the most important is the internals
mailing list. Most of the development process, future ideas and new
contributions are handled through that list. Of course, several IRC

channels and blogs of PHP developers are also used.
Officially, there is no categorizing of developers and everyone is

treated equally. However the project uses a concept named karma,
which means that one increases his karma by contributing to the pro-

5.4 php project analysis 43

1998 2000 2002 2004 2006 2008 2010 2012
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

2,
83

2

4,
95

1

4,
93

5

7,
85

9 8,
54

0

5,
46

6

7,
47

1

6,
82

9

5,
99

4

8,
16

4

6,
57

5

3,
66

5

4,
63

7

Time

#
C

om
m

it
s

Figure 5.24: Yearly overview of commits to PHP. The peaks could match
with the development and releases of PHP 4.3 and PHP 5.

ject with code, discussions and new ideas [Mag10]. Furthermore, sev-
eral people are responsible for different parts of the code or modules
and can be classified using those criteria [PHP#1].

developer One is called a PHP developer, once they get a PHP
Subversion account. According to the PHP community, an account
needs to be earned, which means that one has to provide several
patches and contributions to the PHP project first. Once one has
shown enough commitment, they can apply for an account. The ac-
count however will only be granted if a reference person approves.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

Figure 5.25: Time based view on commits of contributors. A lot of the com-
mits appear to be happened during work days and times with
some volunteer commits in the evenings and Sundays.

module author Each developer has the possibility to become a
module author. This role has the responsibility for a certain PHP mod-
ule, which gets distributed with the PHP release. Examples for such

5.4 php project analysis 44

2011 2012 2013 2014 2015 2016 2017 2018 2019

5.3

5.4

5.5

5.6

6.0

6.1

Time
Ve

rs
io

n
Pre Release Phase Release Lifetime
Security fixes only End of Life

Figure 5.26: Preliminary PHP release cycle.

modules are database or imaging modules. For each module, there
can be more than one module authors, who share the responsibility.

php author This role defines a certain section of the PHP inter-
preter and its responsibility for it. It is quite similar to the module
author role, except that it covers only PHP itself.

language designer Currently only Rasmus Lerdorf, Andi Gut-
mans and Zeev Suraski hold this role. They are the only who can
actively change the programming language syntax and concepts.

5.4.3 Release Process

In 2010, the PHP project set up a new release plan with detailed in-
formation about how the release process should work [PHP#6]. Be-
fore, individuals decided when a release happened and which fea-
tures it included. The new release cycle features two release managers
who are voted by PHP developers. The PHP project uses a version-
ing scheme with three numbers for releases: major, minor and micro.
Major releases get published quite seldom, can break backwards com-
patibility and are planned a long time in advance. Minor releases can
have new features and bug fixes, however backwards compatibility
must be kept. Micro release are bug fix only releases where back-
wards and API compatibility must be kept. Each major release is fol-
lowed by a number of minor releases, which themselves are followed
by a number of micro releases.

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

1.0 2.0

3.0

4.0 4.1

4.2

4.3

4.45.0

5.1

5.2

5.3

Figure 5.27: Major releases of PHP.

5.4 php project analysis 45

1998 2000 2002 2004 2006 2008 2010 2012

0

200

400

600

800

1,000

1,200

Time

#
C

om
m

it
s

Commits Average

Figure 5.28: Amount of commits per month of core contributors. Even if
the previous graphs showed a stalling development, the recent
happenings in 2012 appear to show an again growing project.

Starting with PHP 5.4 a major or minor release will get published
each year. Each yearly release is then followed by a number of mi-
cro releases for two years, which only contains bug fixes. After that
period, only micro releases with security relevant fixes will get pub-
lished.

5.4.4 Development

Most of the development process is handled through the PHP mailing
lists [PHP#6; Mag10; PHP#7]. Not every patch however needs to be
discussed and approved first, minor features or changes often get di-
rectly committed to the repository. Every change needs to pass a peer
review process, where other developers review the made changes. As
well every change gets reviewed by other developers, who in case the
need arises, discuss the change on the developers mailing list. Gener-
ally the result is often a more comprehensive change or new features.

To help the development and decision process, the PHP project
keeps track of new ideas, features and proposals through so called
Request for Comments (RFC) [PHP#5]. Those are documents which
describe the new feature and its rationale. A RFC document is always
owned by at least one person, who is responsible for it. The RFC pro-
cess begins with the author’s submission of the RFC to the PHP wiki
and an announcement to the internals mailing list. Depending on the
importance and affected sections of the PHP project, the following

5.4 php project analysis 46

discussion period is set to a minimum of one to two weeks. It can be
longer however, but not shorter [PHP#7].

After the discussion period has passed, the author can either call
for a vote or extend the discussion period as needed [PHP#7]. The
vote is announced on the mailing list and followed by a voting period
which should be at least one week, but can be extended if required.

Depending on the importance of a RFC, it takes either 2/3 of all
votes or 50 % plus one to get accepted. The importance is defined
by whether it actually changes the syntax or behaviour of the PHP
language and is therefore irreversible or not. A failed proposal can be
resurrected at earliest six months after the last vote or if the author
makes considerable changes to the RFC. There is no definition by the
PHP project, what considerable changes are, however the opinion is
that it should be changed in a way, that it significantly influences a
vote’s outcome.

All PHP developers are allowed to vote and, if needed, representa-
tives from the PHP community, such as participants of PHP related
discussions or developers of PHP appendant projects can participate
in the voting process. Those however have to be chosen by PHP de-
velopers [PHP#8].

During the whole development process, a RFC has an assignment
status, which can be one of the following [PHP#5].

Draft

Withdrawn

Discussion

Accepted

Implemented

Voting

Declined

Figure 5.29: Possible paths of the status of Request for Comments.

draft Once a RFC gets submitted to the PHP wiki, it gets this
status assigned. The Draft status means, that the RFC is not ready yet
for a discussion, however it can be improved also by other people and
a preliminary discussion can be started.

discussion Once the author of a RFC announces it for discussion,
it gets assigned to this status. As previously described, the discussion
phase starts with this status.

voting After the discussion phase the voting begins. While devel-
opers can vote for or against the RFC, the voting status gets assigned
including a link to the voting site.

5.5 gnome project analysis 47

1998 2000 2002 2004 2006 2008 2010 2012

0

10

20

30

40

50

60

Time

#
A

ut
ho

rs

Authors Average

Figure 5.30: Amount of distinct authors of PHP over time. The number
seems to be stable between 20 and 30 authors.

accepted Once a voting was successful, the RFC is accepted and
can be implemented.

declined If the majority voted against the RFC, it gets declined.
After six months and several changes to it, the author can resubmit
it.

implemented If the voting was successful, the RFC will be imple-
mented or taken into action if it describes a community process.

withdrawn The author can withdraw the RFC without calling for
a vote if they think the RFC is irrelevant or won’t pass the voting.

5.5 gnome project analysis

GNOME is a desktop environment for UNIX based systems. It is com-
posed by a collection of tools and programs including a desktop shell
in order to provide all the essential utilities a user might need when
working with a computer. Officially, GNOME is part of the GNU’s
Not Unix (GNU) project and licensed under the GNU GPL and the GNU
Lesser General Public License (GNU LGPL). The name GNOME was
initially an acronym for GNU Network Object Model Environment, how-
ever that acronym was dropped. The GNOME project targets ease of
use and user friendliness and therefore aims for coherent and good
user interfaces [GNO#5], accessibility, internationalization, regular re-

5.5 gnome project analysis 48

leases and good support for users and developers. GNOME is a mod-
ular project, meaning that it consists of several so called modules,
which can be either applications, libraries or utilities. Since the re-
lease of GNOME 3, the modules were reorganized into a GNOME
Core suite and a GNOME Apps suite. GNOME Core provides every-
thing to run a basic desktop system and will therefore be analyzed in
this context.

5.5.1 History

GNOME was first announced and started in 1997 by Miguel de Icaza
and Federico Mena Quintero as a counterpart to KDE [Ger03; GNO#2;
GNO97]. Both were university students at the time when they set
their aim to produce a desktop environment using only FOSS tech-
nologies. KDE relied on the Qt widget toolkit, which at the time was
licensed under a proprietary software license. Instead of using Qt,
they used the GIMP Tool Kit (GTK) originally developed for the GIMP

graphics editor. The GNOME project quickly grew into a large pro-
ject which nowadays is the most popular desktop environment for
UNIX type operating systems. The desktop as well as the developer
technologies can be found on workstations and large enterprises but
also on mobile devices. With the recent GNOME 3 release a major
overhaul with a significant redesign of the desktop environment and
an entirely new user interface took place [GNO11].

1996 1998 2000 2002 2004 2006 2008 2010 2012
0

100

200

300

400

500

Time

#
C

om
m

it
s

Matthias Clasen Owen Taylor Christian Persch
Alexander Larsson Emmanuele Bassi Kjartan Maraas

Figure 5.31: Monthly activity of the most active GNOME Core developers.
The disproportional amount of commits by Matthias Clasen can
be interpreted with a high skill set and lots of effort he puts in
the project.

5.5 gnome project analysis 49

event venue date

GUADEC I Paris, France 2000

GUADEC II Copenhagen, Denmark 2001

GUADEC III Seville, Spain 2002

GUADEC IV Dublin, Ireland 2003

GUADEC V Kristiansand, Norway 2004

GUADEC VI Stuttgart, Germany 2005

GUADEC VII Vilanova i la Geltrú, Spain 2006

GUADEC VIII Birmingham, England 2007

GUADEC IX Istanbul, Turkey 2008

Desktop Summit Gran Canaria, Spain 2009

GUADEC X The Hague, Netherlands 2010

Desktop Summit Berlin, Germany 2011

GUADEC XI La Coruña, Spain 2012

Table 5.2: Previous and planned GNOME conferences.

5.5.2 Community

The GNOME project consists of a large user and developer commu-
nity. While there were about 3500 people contributing to GNOME
and its applications, there is also a big community around the project,
which for example uses GNOME technologies such as GStreamer or
GTK [GNO#2; GNO#10].

Most of the communication inside the project is handled through
mailing lists and IRC channels. Almost every GNOME module has
a dedicated mailing list or IRC channel. Global decisions are mostly
handled through the desktop-devel mailing list. Additionally blogs are
widely spread in the GNOME community and contributors often
write blog posts about achievements, wishes or start discussions.

Next to several hackfests each year, the community holds a yearly
conference under the name GUADEC. It stands for GNOME User and
Developer European Conference, and while the conference only took
place in Europe so far it is nevertheless considered worldwide by the
community [GNO#1].

Due to the large and modular composition of the GNOME project,
there are similar roles for each module. Only very few teams and roles
stand above all modules. In this respect the developer community can
be very much be seen as a flat structure [GNO#10; Ger03; GNO#3;
GNO#7].

committer Any person who contributed a reasonable amount of
improvements to the GNOME project or to a single module can be-

5.5 gnome project analysis 50

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

10,000

20,000

30,000

40,000

50,000

25
6

5,
67

8

6,
81

2

12
,8

20 15
,7

10 19
,1

51

19
,0

63 22
,9

29

24
,1

49

24
,3

51 27
,8

17

39
,5

80

45
,6

14

47
,2

64

48
,6

08

Time

#
C

om
m

it
s

Figure 5.32: Yearly overview of commits to GNOME Core. The leap in 2008

appears to be related to GNOME 2.22 or GNOME 2.24.

come a committer. A committer has full read and write access to all
GNOME repositories. Each commit will however be reviewed and ap-
proved by the maintainer of the module. To get such an account, one
has to make a formal request to the accounts team along with one or
several vouchers who can confirm ones contributions to the GNOME
project. Every module maintainer or translation team leader can act
as a voucher. Furthermore the voucher will be responsible for the
actions of the requesting person on the repositories.

maintainer Every module has one or more maintainers who will
be responsible for releases, reviewing patches and the direction of a
module. They are the main contact for the community and therefore
act as the leader of a certain module. A single module can be admin-
istered by multiple maintainers and one maintainer can administer
several modules. To become a maintainer one has either to create a
new module which gets incorporated into the GNOME project or be
asked by another maintainer.

release team This team is responsible for a wide range of tasks
concerning the development process of the GNOME project. Their
tasks include for example creating a development schedule, making
and publishing releases, approving or rejecting freeze break requests
and defining the module list for GNOME releases. The team size is
not fixed and can vary over time. Membership is only by invitation
and often only when one person leaves the team to free up one space.
The leaving person may recommend a new team member which the
team will decide upon.

5.5 gnome project analysis 51

3.3.4

18

September October November December January February

3.3.91

March

GNOME 3.2.0
Final release!

GNOME 3.4.0
Final release!

Feature Proposals Period

7

28

3.3.90

3.3.5

3.3.2

3.3.3
3.3.1

23

26 21

8

3.2.1

19

3.2.2

16

28

22

API/ABI Freeze

UI Freeze

Feature Freeze

String Freeze

Code
Freeze

String Change
Announcement

7 21

3.3.92

Figure 5.33: Release schedule which will lead to GNOME 3.4.

design team Since GNOME 3 the design team holds a much
more important role in the GNOME project as they primarily define
the design of the GNOME user experience. This is done by designing
the user interface and workflow of GNOME modules. Additionally
they play an important part in the feature based development pro-
cess.

gnome founders Miguel de Icaza and Federico Mena Quintero,
the original GNOME founders, played an important role in the first
years of the GNOME project. Nowadays however they are more active
in projects around GNOME technologies and often act as visionaries.

5.5.3 Release Process

The GNOME project uses a versioning scheme with three numbers.
However, it only distinguishes between major and minor releases
[GNO#4; GNO#6]. The numbers are however nevertheless called ma-
jor, minor and micro numbers. An incrementation of the first number
only occurs when the project does a ground-breaking change, such
as using GTK+2 for GNOME 2.x or the new user experience with
the GNOME shell and GTK+3 for GNOME 3.x. For the minor ver-
sion number the GNOME project uses odd numbers indicating an
unstable series and even numbers for stable releases. For example the
unstable 3.1.x series will become the stable 3.2.x release series.

1998 2000 2002 2004 2006 2008 2010 2012

1.0 1.2 1.4 2.0 2.2

2.4

2.6

2.8

2.10

2.12

2.14

2.16

2.18

2.20

2.22

2.24

2.26

2.28

2.30

2.32

3.0

3.2

Figure 5.34: Major releases of GNOME.

5.5 gnome project analysis 52

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Time

#
C

om
m

it
s

Commits Average

Figure 5.35: Amount of commits per month of core contributors. The project
quite shows a linear growth with peaks every six months.

The release schedule is fixed with a new major release appearing
every six months. To achieve this, the release team publishes a release
schedule in the same frequency [GNO#4]. Over the years it stayed
mostly the same, while few minor changes may occur to comprise
conferences or holidays. The release schedule includes future stable
minor releases, and so the current and future schedule overlap.

Each stable release series consists of at least three releases which are
named with x.y.0 to x.y.2. Of course, a module maintainer can decide
to provide more stable releases [GNO#7]. The unstable series consists
of eight releases which are distributed over six months. The sched-
ule furthermore includes proposal and freeze periods which will be
described in the following [GNO#4; GNO#6].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

Figure 5.36: Time based view on commits of core contributors. It seems that
most developers are employed. The high number on Monday
can be explained with the release preparation which are always
done on Monday evening.

5.5 gnome project analysis 53

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

50

100

150

200

250

300

350

Time

#
A

ut
ho

rs

Authors Average

Figure 5.37: Amount of distinct authors of GNOME Core over time. Espe-
cially the development of GNOME 3 which started in 2010 ap-
pears to have attracted additional developers.

feature proposal period After a major release gets published
the feature proposal period starts. GNOME developers can propose
features for the next major release and discuss them with the com-
munity. Approximately a month later, when the first unstable release
gets published, the proposal period ends. Around two weeks later
the release team meets and decides about proposed features with the
community input given up to this point.

the freeze With the first beta released the first freeze takes action.
No user interface changes, new features or developer API changes
are allowed without approval from the release team. This excludes
of course bug fixes. Additionally new translatable strings must be
announced to the translation and documentation team.

string freeze With the second beta release no string changes
are allowed anymore without confirmation of both the release and
translation team.

hard code freeze With the release of the release candidate no
source code changes are allowed without approval of the release team.
Documentation and translation however can continue. After publish-
ing the next major GNOME release the Hard Code Freeze ends but
all other freezes remain in action for the stable series.

5.6 kde project analysis 54

5.5.4 Development

Before the release of GNOME 3, the release team together with the
community decide about the inclusion of new modules. The develop-
ment of each module was planned and executed by the maintainers.
Since GNOME 3, the development workflow changed into a more de-
sign driven development approach. This means that all new features
concerning user interfaces or applications have to go through the de-
sign team [GNO#3]. This leads to a consistent process with a uniform
user interface. However the design team has no decision making au-
thority and a maintainer can ignore the design team’s proposal.

Next to the design driven approach the module inclusion changed
to a feature inclusion approach [GNO#8; GNO#9]. Every GNOME
contributor can create a feature proposal in which one describes a
feature they would like to see in the next stable GNOME release. A
feature proposal is composed by a description of the problem to be
solved, one or more authors, a list of involved parties and the current
state of the proposal. All of these fields are required and a feature
will not be accepted until all are completed. After each major release
and until about a month later, one can propose a feature for inclusion.
The community has time to discuss the features and improve them for
roughly one and a half months. After that time the release team will
meet and depending on the feedback of the community decide about
the inclusion of each feature. If a feature gets accepted the author
of the feature will be its leader and responsible for the completion.
With the release of the first beta release and the establishment of the
Feature, User Interface (UI) and API/ABI Freeze the feature has to be
finished and working. If not, it may be postponed to the next major
release.

5.6 kde project analysis

KDE is a desktop environment designed to run on UNIX based sys-
tems as well as Microsoft Windows and Mac OS X systems [KDE#9;
KDE#1]. Since 2010 and the release of KDE 4.4 the project is known
as KDE Software Compilation (KDE SC). It is composed by the desk-
top environment named Plasma Desktop and several core applica-
tions for the daily needs. KDE SC is licensed under the GNU GPL and
GNU LGPL. The name was originally an acronym for Kool Desktop
Environment and later for K Desktop Environment, however it is no
longer in use. KDE is a modular project consisting of several libraries
which allow developers to build their programs around the platform.
As the KDE project and the KDE SC stand for a wide range of tech-
nologies and applications, this analysis will be limited to the core of
the KDE SC, also known as KDE Base.

5.6 kde project analysis 55

5.6.1 History

KDE was first announced by Matthias Ettrich in 1996 as a desktop
environment for end users with the same look and feel for all appli-
cations [KDE96]. The name KDE was a word play with the existing
Common Desktop Environment (CDE), which was highly popular at
that time. Matthias Ettrich chose the Qt framework as the graphical li-
brary, which was and is developed by the company Trolltech. KDE 1.0
was then released in 1998 [KDE#7]. At the same time, Trolltech dual
licensed the framework under the Q Public License (QPL) and a pro-
prietary software license. However, it was debated if that license was
compatible with the GNU GPL and in 2000 the framework was licensed
under the GNU GPL which ceased the criticism.

In 2009 the KDE project renamed the project to KDE SC and rede-
fined the project as a community which delivers FOSS for user inter-
faces by emphasizing the KDE technologies [KDE#8]. All software
created with KDE technologies are KDE projects. However KDE SC

only contains projects which derive from the project itself and share
a common release cycle.

KDE SC 4 was a new approach to the desktop metaphor and cre-
ated a new user experience for users. The centerpiece is the Plasma
Workspace which exists for several devices, such as for desktop com-
puters, netbooks, tablets and smartphones.

5.6.2 Community

The KDE project is one of the largest FOSS projects and according to
the community the second largest after the Linux Kernel [KDE#9].
There are about 1800 active contributors to the project and its sur-
roundings and is used by over a million people. Also, the community
spans around projects based on KDE technologies.

Most of the communication in the KDE project takes place via
mailing lists, most importantly kde-devel and kde-core-devel [KDE#10;
KDE#2]. While the first one is mostly used for communication by ap-
plication developers, the latter one is for communication on the KDE
core project. Furthermore communication can happen over IRC chan-
nels, blogs or forums.

The most important KDE conference is the annual Akademy which
is held at different locations in Europe [KDE#7]. The first KDE con-
ferences were however named after the current release which started
with KDE One in 1997. That is also the reason, why the conferences
did not take place annually at that time. In 2004 it changed the name
to Akademy. Beginning with 2009 the project incorporated the con-
ference into the Desktop Summit in collaboration with the GNOME
project.

5.6 kde project analysis 56

event venue date

KDE One Arnsberg, Germany 1997

KDE Two Erlangen, Germany 1999

KDE Three Beta Trysil, Norway 2000

KDE Three Nürnberg, Germany 2002

Kastle Nové Hrady, Czech Republic 2003

aKademy Ludwigsburg, Germany 2004

aKademy Málaga, Spain 2005

aKademy Dublin, Ireland 2006

aKademy Glasgow, Scotland 2007

Akademy Sint-Katelijne-Waver, Belgium 2008

Desktop Summit Gran Canaria, Spain 2009

Akademy Tampere, Finland 2010

Desktop Summit Berlin, Germany 2011

Akademy Tallinn, Estonia 2012

Table 5.3: Previous and planned KDE conferences.

Due to the size of the KDE project it is organized around many
independent teams with a communication structure between them.
There are few groups who stand above those teams and only take
care about coordinating the project [KDE#3; KDE#10].

contributor After having contributed to any KDE project for
some time and planning to contribute in the future, a KDE contributor
account can be requested [KDE#2; KDE#5]. In the request one must
state why one is interested in having an account. The KDE sysadmin
team will then check the application and grant an account or not.

module coordinator As the KDE project is highly modular,
each application or library has an independent team with its own
structure besides a few exceptions. A module coordinator plans and
executes releases and the direction of a single module. As the teams
are so diverse, there are many ways to become a module coordinator.
The most obvious is of course by unweary contributions to a project.

core team One of the most important teams is the core team
as it defines the overall direction the project is heading [KDE#10].
There is no single person inside the team responsible for decision
making, instead the team discusses the issue and comes up with a
solution together. The primary communication method is the kde-core-
devel mailing list which is publicly readable, however an approval is

5.6 kde project analysis 57

1996 1998 2000 2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

300

350

400

450

500

Time

#
C

om
m

it
s

David Faure Aaron J. Seigo Laurent Montel
Dirk Mueller Stephan Kulow Marco Martin

Figure 5.38: Monthly activity of the most active KDE Base developers. The
most active developers almost switched completely when com-
paring the inception phase to nowadays.

required to join it. The KDE project does not define clear restrictions
to membership and therefore a membership is granted by invite only
after distinguishing or outstanding work for the KDE project.

release team The actual release and the release schedules are
provided and enforced by the release team [KDE#11]. It is composed
by module coordinators and other release team members who ac-
tually implement the releases. The release team makes sure that all
modules are following the release schedule and are in a good shape.
Also they decide on code freeze breaks and take decision about future
features of a release.

kde founder Matthias Ettrich, the founder of the KDE project is
no longer actively involved in the project as he works full time on the
underlying Qt framework. However he has still an important voice in
the community and contributes indirectly to KDE by his role in the
Qt project.

5.6.3 Release Process

The KDE project uses a versioning scheme with three numbers and
distinguishes between major and minor releases [KDE#11; KDE#6;
KDE#12]. The numbers are called major, minor and micro numbers.

5.6 kde project analysis 58

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

96
6 2,

16
6

7,
53

8

16
,5

79

15
,2

08

15
,2

01

14
,2

19

11
,0

06

11
,9

03 15
,1

54

26
,1

59

29
,6

60

29
,9

47

26
,0

89

15
,5

78

Time

#
C

om
m

it
s

Figure 5.39: Yearly overview of commits to KDE Base. The development and
release of KDE 4 and following releases in 2008 certainly at-
tracted a lot of attention.

The major and minor numbers define major releases while the micro
number defines maintenance releases. The release is a platform or
standard release depending on whether the major or minor numbers
change. A platform release defines a new series of releases which
can break backwards compatibility to the previous platform release.
They are often planned a long time ahead, usually including changes
of used libraries or used library versions. A standard release however
has to maintain backwards compatibility with its series. They can
have new features and user interface changes, however a KDE appli-
cation has to work on all releases of the same platform. Maintenance
releases are not allowed to come with new features, except bug fixes
or small enhancements. Beginning with KDE SC 4 the cycle changed to
a major release every six months and a maintenance release roughly
every month except when a major release comes out.

1998 2000 2002 2004 2006 2008 2010 2012

1.0

1.1

2.0

2.1

2.2

3.0

3.1

3.2

3.3

3.4

3.5 4.0

4.1

4.2

4.3

SC
4.4

SC
4.5

SC
4.6

SC
4.7

Figure 5.40: Platform and standard releases of KDE.

To ensure the release schedule, the release team publishes a new
release schedule after each major release. The schedule includes all

5.6 kde project analysis 59

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

500

1,000

1,500

2,000

2,500

3,000

Time

#
C

om
m

it
s

Commits Average

Figure 5.41: Amount of commits per month of core contributors. Again, the
development phase of KDE 4 and following releases is quite
visible.

deadlines and freezes which will lead to the next major release and
includes future maintenance releases. This means of course that two
release schedules will overlap during the month before the new major
release. The following freezes and releases are provided and enforced
by the release team [KDE#6].

soft feature freeze Approximately three weeks before the first
beta release no new features are allowed except already approved and
planned features. Not finalized features have to be postponed to the
next major release.

dependency freeze Approximately two weeks before the first
beta release no new or additional dependency versions are allowed
anymore. However it is possible to request an exception by the release
team.

soft message , soft api and hard feature freeze A week
before the first beta release no new strings and changes to the existing
messages can be made except corrections. Additionally the existing
API should be almost finished and if changes are made they should be
reported to the relevant teams. Lastly no new features can be added
to the projects, even if they were planned for this release cycle.

5.6 kde project analysis 60

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

20

40

60

80

100

120

140

160

180

Time

#
A

ut
ho

rs

Authors Average

Figure 5.42: Amount of distinct authors of KDE Base over time. The pro-
ject appears to grow quite linearly with a small down before
the start of the KDE 4 development and the appropriate boost
during and after the development.

beta release Approximately two months before the major re-
lease the first beta release gets published. This is usually followed
by a second beta release two weeks later.

hard api , message and documentation freeze Five weeks
before the major release the API, translatable messages and the docu-
mentation must be finished and can’t be changed anymore.

release candidate Approximately a month before the final re-
lease the first release candidate will be published. Two weeks later
the second release candidate follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

Figure 5.43: Time based view on commits of core contributors. The times are
almost equally distributed probably meaning that there exist a
lot of employed and volunteering developers in the community.

5.6 kde project analysis 61

final release Three weeks after the last release candidate the
final release will then be published.

minor releases A new minor release will be published each fol-
lowing month until the next major release gets published. This nor-
mally leads to four minor releases.

5.6.4 Development

During the development of a new major release, new project goals
are set using feature proposals [KDE#3; KDE#4]. This normally hap-
pens after each major release when KDE developers have the time to
propose new features for the next major release. Each feature must
have an author who is willing to implement it. This often limits the
number of features to already contributing KDE developers. A KDE
developer is free to implement the feature by himself, however the
process is often accompanied by a discussion with the specific team
and several adjustments to the implementation.

During the soft feature freeze it is decided whether the feature will
be available for the upcoming major release or if it will be postponed
to the next major release. If the implementation already started and is
almost finished, it can continue. Otherwise it will be postponed. This
development process is a quite deliberate approach where people are
free to implement what they see missing in the project.

5.7 proposition for a project analysis catalogue 62

5.7 proposition for a project analysis catalogue

To characterize the development processes of FOSS projects, the fol-
lowing catalogue was established based on the previously gathered
data and analysis. By covering all listed points a project should have
been analyzed thoroughly and lead to a reasonable breakdown of all
projects.

5.7.1 Description of the Project

A general description of the project provides information on the goals
and current state of a project. They are essential to put a project under
the right light and make it comparable with similar projects.

5.7.2 Project Category

In order to provide methods to compare projects, the project category
can help to contrast projects of the same and other categories. As such
it doesn’t provide too much information about the project itself, but
is useful for later comparisons with other projects.

5.7.3 Scope of Analysis

As FOSS projects often are hard to analyze due to their size and un-
clear definition of modules, the scope will be limited to a well known
subset of the whole project. This helps to provide a thorough analysis
without leaving things unattended.

5.7.4 License

A project cannot be counted as a FOSS project without being licensed
under a FOSS license. Listing all used licenses can ensure this fact.
However it is also interesting to see whether development models
and communities differ if they are using a different FOSS license.

5.7.5 History

A project’s history shaped the community and the structure of a pro-
ject to the state it has today. As such the analysis of the history can
bring up interesting findings.

founders In some projects, the original founders are still present
and have an influential voice, in others the original authors are no
longer involved. To analyze this further, the authors have to be intro-
duced and their role will be analyzed in the community part.

5.7 proposition for a project analysis catalogue 63

project age Projects always need time to evolve and find their
best practise development process. As this takes time, the project age
can give some information in what development process state this
project is and how it will evolve in the future.

5.7.6 Community

The people behind the project are the driving force. Without them,
a project would not exist. Therefore it is important to analyze the
diverse community of each project.

community size An important measure is the approximate size
of a community. Several structural decisions and changes inside the
project can depend on its size.

communication The communication is a vital thing in an open
project. It is interesting to compare the different methods of commu-
nication in several projects depending on their development structure
and size.

conferences and meet-ups Meetings of developers are an im-
portant element of the development process in FOSS projects. It also
shows, that there is enough interest available to provide the needed
money for preparing such events.

roles The development process is often defined and lead by im-
portant roles in the project. Also, depending on what role a person
has in the project, their influence varies.

role of the founders In some projects the founders are still
actively involved and in some not. Depending on the project, the
founders often have a very important role in the project development
process.

5.7.7 Release Process

The release process is the action which leads to new releases. As this
is a very essential part of the development processes it will be ana-
lyzed with the following classification.

version naming Each project provides a specific version naming
scheme to which they adopt and which characterizes major, minor
or bug fixing releases. This information is vital to understand the
project’s release schedule.

5.7 proposition for a project analysis catalogue 64

characterization of releases Most projects provide some
kind of major and minor releases where major releases do come with
new features and often backwards incompatible changes. Minor re-
leases on the other hand often only contain fixes. It is now interesting
to see where and how the line between the two is drawn.

release schedule The release schedule defines a concrete plan
up to a new release and is often either time or causal dependent. As
they define deadlines or important steps in the process of creating
new releases it is most interesting to compare different schedules.

important steps in the schedule These steps often define
freezes or specific points in time when all members of the project are
restricted to for example not provide new code in order to increase
the stability of the new release.

5.7.8 Development

The actual development is closely interweaved with the release pro-
cess and defines how and when the development of a project takes
place.

development lead It is hardly imaginable that projects exist
which have a completely unstructured development process and have
no development leaders in place. This point covers, if existent, groups
of people who define new features and lead the development process.

development workflow The actual development process as
often defined by the project leaders provides ways and methods to
propose and develop new features for the upcoming release. It also
covers the daily development and how new code finds its way into
the project’s repositories.

feature inclusion process Whether projects do have estab-
lished a concrete process for how and when new features are inte-
grated in a project or not will be capped in this point.

5.8 postgresql project analysis 65

5.8 postgresql project analysis

The PostgreSQL project facilitates an Object-Relational Database Man-
agement System (ORDBMS) which runs on all major systems such as
Linux, UNIX, Microsoft Windows or Mac OS X [Pos#1; Pos#8]. The
group behind the project is known as PostgreSQL Global Develop-
ment Group which consists of several volunteers and employed de-
velopers. PostgreSQL is quite popular amongst its users and has won
several prizes for the best database management system [Pos#2]. Ac-
cording to the project it is the leading FOSS database system with
thousands of users and contributors [Pos#11].

5.8.1 Project Category

PostgreSQL is a database management system, more specifically a
ORDBMS [Pos#1].

5.8.2 Scope of Analysis

The PostgreSQL Core Distribution will be analyzed, which consists
of the PostgreSQL database server, several tools and bindings around
it [Pos#6].

5.8.3 License

The PostgreSQL project makes use of the PostgreSQL license, which
is a FOSS license [Pos#8; Pos#10]. It only requires to maintain the copy-
right and licensing information in the licensed source code and there-
fore it is quite similar to a BSD license.

5.8.4 History

The project was started in 1986 by Lawrence A. Rowe and Michael
R. Stonebraker at the University of California in Berkeley under the
name POSTGRES [Pos#9]. Not until 1996 it was developed in a uni-
versity style fashion trying to explore new areas in database man-
agement systems. It was then released as FOSS by two students of
Stonebraker with the new name PostgreSQL the adopted Structured
Query Language (SQL). It then received a big development boost and
emerged to one of the leading ORDBMSs.

5.8.5 Community

The PostgreSQL project has a quite large community which will be
described in the following.

5.8 postgresql project analysis 66

community size According to the project there are six core team
members, 38 major contributors and 42 contributors [Pos#4]. Adding
no longer active people the number sums up to around 140. The num-
ber of total contributors might however be higher, as the project only
includes people who have made contributions over a long time.

communication The development related communication takes
mainly place through mailing lists, although also IRC channels exist.
The most important mailing list for development is the pgsql-hackers
mailing list [Pos#5].

conferences and meet-ups The most important international
conference is the annual PgCon which was first organized in 2007

[Pos#7]. However there are a lot of local conferences and workshops
available.

roles The developers are split into three groups [Pos#4]. The core
team decides on the general direction of the PostgreSQL project as
well as the release cycle and the releases. Major contributors are peo-
ple who introduced or maintain big features to the project. The con-
tributors are all other who provide patches to the project.

role of the founders Michael R. Stonebraker and Lawrence A.
Rowe did not follow the project anymore when it was published as
FOSS in 1996 [Pos#9]. They are therefore no longer actively involved
in the project.

5.8.6 Release Process

The used release process is highly structured and will be described
in the following.

version naming The PostgreSQL project uses a three digit num-
ber scheme for the releases which consists of a major, minor and mi-
cro number [Pos#14].

characterization of releases The incrementation of a ma-
jor or minor number defines a major release including new features
and often backwards incompatible changes [Pos#14]. Such a release
occurs roughly once a year [Pos#12; Pos#8]. For each major release
a number of minor releases exist which are defined by incrementing
the micro version number. Only bug and security fixes are allowed for
those releases. Each major release is supported for five years by the
PostgreSQL project. However in some cases the project can decide to
drop support for a specific release if bugs cannot be resolved without
risking the stability.

5.8 postgresql project analysis 67

release schedule As major releases occur every year, the pro-
ject uses the same release schedule every year along with some minor
improvements from the last years [Pos#12]. The release schedule gets
planned and decided during the PgCon conference. It basically starts
each June with a commit review in which possible patches might be
included in the next major release. Such reviews, also known as Com-
mit Fests, happen four times each two months apart. In the month
between an alpha release is published. After the last Commit Fest,
more alpha releases can follow, if no beta releases are published. If
no more critical errors are found several release candidates will be
published which will lead to the next major release.

important steps in the schedule The Commit Fests are the
only possibility to add new features to the project and are therefore a
vital part of the development process [Pos#12; Pos#3].

5.8.7 Development

The development of the PostgreSQL project is closely entangled with
the release process and will be described in the following.

development lead The PostgreSQL project is mostly driven by
the core team [Pos#5; Pos#8; Pos#4]. Quite all decisions are made by
them as well as most new features and code contributions.

development workflow Small patches are often submitted di-
rectly to the repository if they are done by a major contributor or a
core team member [Pos#5]. All other patches however have to be re-
viewed and are therefore sent to the pgsql-hackers mailing list. New
features are proposed in the Commit Fests.

feature inclusion process The already mentioned Commit
Fest is a periodic break in which no new development is done. How-
ever, already existing patches are reviewed and receive feedback by
the core team and other developers [Pos#3]. A single Commit Fest
usually runs for about one month explaining the gap of one month
between each Commit Fest. One such event is lead by a Commit Fest
manager who is responsible that all submitted patches will be re-
viewed. Often, a review results in a discussion on the mailing list and
follows an acceptance, a return with feedback or a rejection. A patch
can have several states, depending on whether it is in progress or fin-
ished [Pos#13]. If a patch is in progress, the following states might
apply.

5.9 mysql/mariadb project analysis 68

needs review A patch is not reviewed and waiting for a review.

waiting on author A new version of the patch is expected by
the author.

discussing review results The review was done, however it
is discussed on the mailing list.

ready for committer The review was done and no issues were
found. It is now waiting for a final review.

The states of a patch in progress are the following.

returned with feedback The patch was reviewed and feed-
back was given. A new version of the patch is expected for the
next Commit Fest.

rejected The patch was rejected and won’t make it into the next
major release.

committed The patch was applied and no remaining issues are
assured.

5.9 mysql/mariadb project analysis

MySQL is according to the project the world’s most used ORDBMS

[Sun08]. It runs on all major platforms and is widely used for many
web applications. MySQL was originally developed by MySQL Ab,
later bought by Sun Microsystems and now owned by Oracle Corpo-
ration [Sun08; Ora10; Ora#2].

MariaDB was forked from the original MySQL when Oracle bought
Sun Corporations as it was unclear how the development and li-
censing of MySQL would change after Oracle’s acquisition [Mon#1;
Mon#12]. It is intended to be a drop-in replacement for MySQL with
full compatibility to it. Also, many of the original MySQL developers
moved to the MariaDB project making it interesting to analyze both
projects together.

5.9.1 Project Category

MySQL and MariaDB are database management systems, more specif-
ically ORDBMSs [Mon#1].

5.9.2 Scope of Analysis

The analysis includes the MySQL Server package and MariaDB. Both
provide a compatible database server together with several tools for
running it.

5.9 mysql/mariadb project analysis 69

5.9.3 License

MySQL is dual-licensed under the GNU GPL and a proprietary license.
MariaDB is single licensed under the GNU GPL [Mon#10].

5.9.4 History

The MySQL project was started in 1994 by Michael Widenius and
David Axmark by launching the company MySQL Ab [Ora#2]. Origi-
nally it was a clone of the mSQL project, which was quite popular at
that time. In 2000 MySQL was released as FOSS under a dual licens-
ing model. Sun Microsystems bought MySQL Ab in 2008 which lead
to the abandonment of the MySQL founders Micheal Widenius and
David Axmark [Sun08]. In 2010 Oracle Corporation bought Sun Mi-
crosystems and announced changes to the current development pro-
cesses [Ora10]. As the future of MySQL in terms of FOSS was quite
unclear at that time Michael Widenius forked MySQL in order to
provide a community developed FOSS database [Mon#12]. The first
version of MariaDB was released in 2010 as MariaDB 5.1 which is
compatible to MySQL 5.1 [Mon#9]. Since then the MariaDB project
tries to stay compatible with MySQL but also to provide better per-
formance and more features.

5.9.5 Community

As most of the key-authors of MySQL moved to different projects
such as MariaDB and since there is not much insight available about
the current happenings inside Oracle, the MariaDB community will
be analyzed including facts about the pre-Oracle era of MySQL.

community size The specific size of the community is not known
and is fractured due to the two acquisitions by Sun Microsystems and
Oracle Corporation. The newly founded Monty Program Ab com-
pany however lists at least 20 people working on MariaDB [Mon#12].

communication The communication of the developers mostly
takes place through mailing lists, although also IRC channels exist.
The most important mailing list are the maria-developers and maria-
captains mailing lists [Mon#11].

conferences and meet-ups The MariaDB project has not yet
set up a conference, however the MySQL project mostly meet once a
year at the MySQL Users Conference & Expo which was first organized
in 2003 [Ora#3].

5.9 mysql/mariadb project analysis 70

roles The developers are split into two groups. A developer is a
person who produces enhancements and new features for MariaDB
[Mon#2; Mon#3; Mon#8]. However they have no right to commit their
work before it was reviewed. The captains are developers who are
working for a long time for the project and have made substantial
improvements. To become a captain one has to make a formal re-
quest on which the other captains will vote [Mon#8]. Captains give
the direction of the project, do the code reviews and take care of the
project. Finally a release coordinator exists who normally is a captain
[Mon#6]. By definition the coordinator gains no additional rights and
only leads the communication and release management of the project.

role of the founders Micheal Widenius took a vital role in
the fork and new project MariaDB [Mon#12; Mon#1]. He has an im-
portant voice in the community and still gives general directions, if
nevertheless MariaDB is mostly driven by MariaDB captains (which
he belongs too). David Axmark however left Sun in 2008 and is no
longer actively involved in either the MySQL nor MariaDB project.
He also does not follow their development anymore.

5.9.6 Release Process

The used release process is structured and will be described in the
following.

version naming The MySQL/MariaDB project uses a three digit
number scheme which consists of a major, minor and micro number
[Ora#1].

characterization of releases The incrementation of a ma-
jor number defines big and often incompatible changes to their pre-
decessors [Ora#1]. In the current releases it marks the file format in
which the database is stored. A major release is defined by an incre-
mentation of the minor number and allows new features to be added
to the release. In most cases the releases are backwards compatible,
but if not, there are always upgrade paths available [Mon#9]. Finally,
the micro number defines minor releases in which only bug and se-
curity fixes may apply.

release schedule The MariaDB project does not have a fixed
release schedule and is quite similar to the MySQL release schedule
[Mon#7; Mon#4; Mon#5]. It has criteria in place when specific releases
can happen. After the last stable major release, all new features for the
next stable major release will be collected. Every feature a MariaDB
developer agrees to implement in the time frame to the next major
release will be considered as a new feature. After most features are

5.9 mysql/mariadb project analysis 71

nearly finished one or several alpha releases follow. The criteria for
beta releases are that the proposed features are finished and no seri-
ous bugs are open. The gamma or release candidates are believed to
be ready for general usage, however testing is still required. Finally
the stable release should have no more open bugs or critical errors
and is ready for general usage.

important steps in the schedule The feature proposal pe-
riod, alpha and beta releases are of course the most important steps
in this schedule as they restrict new features or code changes further
[Mon#7]. For example, after a beta release the whole API cannot be
changed anymore.

5.9.7 Development

The development of the MySQL/MariaDB project is loosely entan-
gled with the release process and will be described in the following.

development lead The development of the MariaDB project
is mostly driven by the MariaDB captains [Mon#3; Mon#11]. The
founder of MariaDB and MySQL Micheal Widenius plays an impor-
tant role and even if not stated by the project has an important voice
about the direction.

development workflow Small patches are often submitted di-
rectly to the repository if they are done by a captain. All other patches
by developers will be reviewed and applied if they suit the project
well [Mon#4; Mon#5]. Bigger features will be accepted after each ma-
jor release.

feature inclusion process After a major release a developer
can propose new features [Mon#5]. A feature will be accepted if a
developer accepts that feature and is willing to implement it [Mon#2;
Mon#3]. It then will move to the so called worklog page of MariaDB
where other developers see the current status of a feature. A feature
can have multiple states, such as the following.

assigned The feature was assigned to a developer who will be in
charge to provide the feature for the next release.

cancelled The feature was cancelled for this release but might
be proposed for the next.

code-review The feature will be reviewed by other MariaDB de-
velopers and captains.

complete The feature is ready and will be part of the next re-
lease.

5.10 fedora project analysis 72

in-documentation The feature is completed code-wise but still
has to be documented.

in-progress A developer is currently implementing this feature.

on-hold The feature will not be developed further until the sta-
tus can be changed back to in progress. This could happen if
a technical problem arises or the feature is put up for a discus-
sion.

un-assigned The feature is still unassigned and no developer
has claimed this feature yet.

5.10 fedora project analysis

The Fedora project provides a so called Linux distribution which is a
collection of FOSS and is based on the Linux kernel [Fed#15; Fed#14].
The distribution is also called Fedora operating system or Fedora pro-
ject, however the latter one refers to the community which builds the
project. As it only features FOSS, the Fedora operating system is also
FOSS. The mission of the project is to lead the advancement and it is
also known to incorporate new products and software very quickly.
The project is mostly sponsored by Red Hat, however due to its struc-
ture it can be seen as independent from a companies influence.

5.10.1 Project Category

The Fedora operating system is, as the name already states, an oper-
ating system [Fed#15].

5.10.2 Scope of Analysis

The operating system provided by the Fedora project will be ana-
lyzed, which consists of a large collection of FOSS needed to run and
work on a computer.

5.10.3 License

As the projects goal is to provide a FOSS based product only FOSS

licenses are allowed [Fed#10]. The project provides a list of acceptable
licenses. For own software creations the GNU GPL is mostly used.

5.10.4 History

The original Fedora project was created in 2002 by Warren Togami in
order to enhance the quality and number of packages available for

5.10 fedora project analysis 73

the at that time existing Red Hat Linux distribution [Fed#15; Fed#14;
Fed#8]. In 2003 the development of Red Hat Linux stopped and was
merged with the Fedora project. Since then the Fedora project pro-
vides a community distribution while Red Hat Enterprise Linux is
an officially supported Linux distribution which derives from Fedora
versions. Until 2006 the operating system was known as Fedora Core.
Later the project changed the name to Fedora. The name Fedora orig-
inates from the Red Hat logo which shows a person with a fedora
hat.

5.10.5 Community

The Fedora project has a quite large community which will be de-
scribed in the following.

community size The exact size of the community is unknown,
however the project consists of a quite large group [Fed#13]. For ex-
ample the total number of active accounts exceeds 30,000 people. This
number however does not describe the actual size accurately as it in-
cludes many users of the operating system.

communication Most of the communication takes place over
mailing lists [Fed#15; Fed#9; Fed#12]. Each of the mailing lists is quite
focused on a certain sub-topic, however the most important general
development related mailing list is the devel mailing list. Additional
communication happens through several IRC channels, forums, blogs
or the weekly newsletter [Fed#6; Fed#2].

conferences and meet-ups Since 2005 the Fedora project or-
ganizes the Fedora Users and Developers Conference (FUDCon) which
is held annually in various places around the world [Fed#7].

roles The Fedora project has a quite flat structure with several
teams and Special Interest Groups (SIGs) [Fed#9; Fed#2; Fed#12]. Each
team or SIG is in charge for a specific sub project or area in the project.
Each team is lead by one or several people. The usual way to be a
part of a specific team is to provide several contributions until one
can apply. Examples for such teams and SIGs are Release Engineer-
ing, Desktop or Usability. The technical leadership is handled by the
Fedora Engineering Steering Committee (FESCo), a community elected
team, which handles new features, SIGs or technical matters [Fed#4].
The general direction and guiding decisions however are handled by
the Fedora project board which consists of five community elected
people and four appointed by Red Hat [Fed#1].

5.10 fedora project analysis 74

role of the founders Warren Togami is still involved in the
Fedora project, however he focuses more on Fedora related projects,
such as SpamAssassin or K12Linux which is a distribution built on
top of Fedora [Fed#14].

5.10.6 Release Process

The release process used is highly structured and will be described
in the following.

version naming The Fedora project uses a single number ver-
sioning scheme [Fed#8; Fed#5]. This single number defines major re-
leases.

characterization of releases There are no minor releases
since updates to the operating system come via single updates of the
affected packages [Fed#8; Fed#5]. Therefore each incrementation of
the version number defines a new major release.

release schedule The Fedora project uses a fixed release cy-
cle with a new major release every six months [Fed#5; Fed#11]. Each
major release is then maintained until one month after either two
releases or 13 months. The release schedule is proposed by the re-
lease engineering team and approved by the FESCo. In some cases,
the schedule can be slightly adjusted if critical bugs appear and can’t
be solved in the original time frame. After a major release the plan-
ning and development can start. One week before the alpha release,
no new feature will be accepted. The alpha release will be followed
by a beta and final release candidate. Depending on whether each of
the previous releases was postponed or not the final release will be
published approximately six months after the previous major release.

important steps in the schedule The most important steps
are the feature acceptance, feature freeze and feature complete mile-
stones in the release schedule [Fed#5]. In each of the named steps the
FESCo will decide if a feature will be accepted or be in the next release
depending on its completeness.

5.10.7 Development

The development of the Fedora project is quite entangled with the
release process and will be described in the following.

development lead The development of the Fedora project is
mostly driven by the FESCo which decides on new features and the
technical direction of the project [Fed#4].

5.11 debian project analysis 75

development workflow The development process of the Fe-
dora project is quite open [Fed#11; Fed#12]. As already stated above,
there are many SIGs available which steer the development of a certain
area in the project. Depending on the SIG the development workflow
can vary, however the general direction is always given by the FESCo.

feature inclusion process To propose a feature for the next
major release a formal feature proposal has to be made [Fed#3; Fed#4].
This includes a description of the problem, an owner, the current sta-
tus and several other points. Any Fedora community member can
propose them and the FESCo decides on the acceptance of the feature.
Additionally a feature can be dropped if it is not completed at the
feature freezer, before the beta release or if the owner does not up-
date the feature status. A feature can be either incomplete when the
proposal is not ready, ready when it is disposed for review, ready for
FESCo when it can be proposed to the committee and finally accepted
if the voting by the FESCo was successful.

5.11 debian project analysis

The Debian project provides an operating system on top of various
kernels, such as the Linux kernel [Deb#2; Deb#13]. Even if there are
other kernels available, such as the FreeBSD, NetBSD or Hurd kernel,
Linux is the most prominent one. Therefore, Debian often gets called
Debian GNU/Linux. The mission of the Debian project is to provide
a free operating system in the meaning of FOSS, to provide a full fea-
tured operating system with high standard and to have a big evolving
community. The Debian project is known as a very stable operating
system and is therefore often used on servers.

5.11.1 Project Category

The Debian operating system is, as the name already states, an oper-
ating system.

5.11.2 Scope of Analysis

The Debian GNU/Linux operating system provided by the Debian
project will be analyzed, which consists of a large collection of FOSS

needed to run and work on a computer.

5.11.3 License

The project’s goal is to provide an operating system consisting en-
tirely of FOSS [Deb#11; Deb#14]. However, it is possible to install non-

5.11 debian project analysis 76

free software too. According to the Debian Free Software Guidelines
(DFSG) the project itself only accepts FOSS licenses, but the GNU GPL is
mostly used for own creations.

5.11.4 History

The Debian project was created by Ian Murdock in 1993, in order to
provide a distribution which was developed in an open style and in
the spirit of a FOSS development process [Deb#2; Deb#1; SSRD08]. At
that time, the concept of a distribution was quite new and Debian can
be counted as one of the early distributions, although it was not the
first. The name is a fusion between Ian and the first name of his wife,
Debra. The Debian project established several policies and contracts
to ensure the future freedom of the project. Debian is still the most
significant distribution that is not backed by a commercial entity.

5.11.5 Community

The Debian project has a large community available which will be
described in the following.

community size The community size is quite large and ranges
between 800 and 1000 active developers [Per11; Deb#10].

communication Most of the communication is handled through
several mailing lists [Deb#12; Deb#14; Deb#6]. For quite every aspect
or subproject there is a mailing list available. The most important for
development is the debian-devel mailing list. Additionally there are
many IRC channels, forums and blogs available.

conferences and meet-ups The most important conference in
the Debian project is the annual DebConf which took first place in
2000 [Deb#3]. So far it was organized in various regions and conti-
nents worldwide.

roles The Debian project has a quite hierarchical structure with
several teams [Deb#10; SSRD08]. A Debian contributor is any person
who contributes to the project, but has no additional rights [Deb#14].
Debian maintainer have restricted access capabilities [Deb#5]. To be-
come a Debian maintainer one has to go through a formal process
requesting the role. At least one Debian developer must then ap-
prove this person. The Debian developers have full access rights and
often maintain parts of the project [Deb#4]. On top there is a pro-
ject leader who gets elected by the Debian community every year
[Deb#10; Deb#9]. Beneath the project leader there is a technical com-
mittee which drives the project’s technical decisions. Additionally

5.11 debian project analysis 77

there are many teams in charge for parts of the project, such as Re-
lease Engineering, Ports or the distribution of the project.

role of the founders Ian Murdock led the project from its be-
ginning until 1996 as the project leader when he passed this function
to Bruce Perens [Deb#14; Deb#1]. Although he still works in the FOSS

field he is no longer involved in the Debian project.

5.11.6 Release Process

The used release process is highly structured and will be described
in the following.

version naming The Debian project uses a three digit number
scheme which consists of a major, minor and micro number [Deb#8].

characterization of releases Debian has always at least
three active releases available: stable, testing and unstable [Deb#8;
Deb#7]. Each of the three is a major release and indicated by a dif-
ferent major version number. The minor number was used until De-
bian 3.1 as a major release indicator, however this is not the case
anymore. The micro version number indicates bug fixes to the major
release.

release schedule With three active release branches, the actual
releases change if a new stable version will be introduced [McG11;
Deb#7; Deb09]. In that case the old stable will be named as oldstable
and maintained for one more year. The testing branch will become
the new stable and the unstable the new testing. The Debian project
does not have a fixed release schedule. A new release is announced
when the release team and core team think it is ready. At this time
a freeze is called in and a release follows shortly thereafter. However
there is some effort to have regular releases and predictable freeze
schedules. For the next release the Debian project is trying to adopt a
time based freeze and release cycle [McG11].

important steps in the schedule As the new release sched-
ule is not clear yet, a characterization of the important steps is not
possible. However the final freeze and the announcement of release
goals by the release team are certainly important steps within the
schedule.

5.11.7 Development

The development of the Debian project leads directly to future re-
leases and will be described in the following.

5.11 debian project analysis 78

development lead The development is mostly driven by the
project leader and the technical committee who set the goals for fu-
ture releases [Deb#10]. In addition the team leaders can set their own
goals.

development workflow As the stable branch is closed for new
features, most new features have to go directly into the unstable
branch [Deb#14; Deb#4; Deb#7]. If those changes have been tested for
long enough they eventually will be merged with the testing branch.
Parts of the Debian project will either be maintained by single De-
bian developers or co-maintained by others. Depending on that and
the goals set by the project leader, Debian developers start to work.

feature inclusion process The Debian project uses so called
release goals which are proposed by Debian community members
and chosen by the release team [Deb09; McG11]. The release team will
decide on each goal and set it for a specific release or postpone it. At
some point during the development the release team will announce
the chosen release goals.

6
C O M PA R I S O N O F D E V E L O P M E N T P R O C E S S E S

As the analyzed projects were described in the previous chapter, this
chapter will compare the development processes and project details
with each other.

6.1 project origin

All analyzed projects share a quite different history. Some were de-
veloped with an university background like PostgreSQL or Python
while other projects were born in the FOSS context. The GNOME or
Debian projects are an example for that. Projects like Plone or Fedora
were an improvement and additional layer to an existing project.

It is interesting to note, that many project founders tried to solve
a personal problem with the project they were about to start. KDE,
Drupal, Fedora and PHP are notable here. However also commercial
or philosophical background can initiate a project, such as MySQL
with MySQL Ab or GNOME show.

project license

Debian Various, mainly GNU GPL

Drupal GNU GPL

Fedora Various, mainly GNU GPL

GNOME GNU GPL, GNU LGPL

KDE GNU GPL, GNU LGPL

MySQL/MariaDB GNU GPL

PHP PHP License

Plone GNU GPL

PostgreSQL PostgreSQL License

Python Python Software Foundation License

Table 6.1: Used licenses in the analyzed projects.

Even if the number of developers increased over time, all projects
were started by a small group of people which often consisted of at
most two people. Often, a single person was more involved in the pro-
ject creation, even if other people were involved too. Michael Wide-
nius of MySQL/MariaDB fits this case. After inception however the
number of people involved grows rapidly. This statement holds for
all analyzed projects and is especially the case when the project was

79

6.2 community 80

project origin founder

Debian 1993 Ian Murdock

Drupal 2001 Dries Buytaert

Fedora 2002 Warren Togami

GNOME 1997 Miguel de Icaza & Federico Mena
Quintero

KDE 1996 Matthias Ettrich

MySQL/MariaDB 1997 Michael Widenius & David Axmark

PHP 1994 Rasmus Lerdorf

Plone 1999 Alexander Limi & Alan Runyan

PostgreSQL 1986 Lawrence A. Rowe & Michael R.
Stonebraker

Python 1989 Guido van Rossum

Table 6.2: Project founders and origins.

finally released as FOSS. Examples like PostgreSQL or Python show
the rapid increase of people involved, be it just developers or other,
when finally released as FOSS. The growth graph however is quite sim-
ilar in all analyzed projects, if one considers time and size differences
between the projects. Also it is worth noticing that almost every ana-
lyzed project has one or more rapid developer growth periods. Those
periods can be matched with a certain major release of the projects.
This becomes clear when one examines the release and development
of Python 2.0, GNOME 3.0, KDE 4.0 and Plone 4.0. All of those ver-
sions are major releases with new features and approaches to their
project goals. It seems that the development of such big releases at-
tracts a lot of new developers. Furthermore the increased size stayed
almost the same after the release.

6.2 community

The previous project analysis has shown, that the communities of
each project seem to be quite different. This will be compared in the
following sections.

6.2.1 Community Size

As all of the analyzed projects share a quite long history, a lot of peo-
ple were active in the projects. This of course biases the comparison
between communities, as the actual number of developers is almost
always lower than the total sum of developers in the project history.
Also taking in mind that only the central parts of the projects were an-

6.2 community 81

alyzed, the resulting number can vary a lot. For example the GNOME
project claims that over 3500 people contributed to the project. The
fact that only GNOME Core was analyzed and no longer active devel-
opers were left out reduces the finding to currently about 350 active
developers of GNOME Core. The same probably holds true for the
Drupal project with about 1200 enlisted developers and for the KDE
project with about 1800 active contributors.

Also it is important to carefully distinguish between core develop-
ers and other contributors. Since in some projects only core develop-
ers have access to the code repository, an analysis of code authors
is not always a satisfying approach. The Drupal project for example
only has about six to ten distinct authors to Drupal Core. Only re-
cently they adopted to give credit to the original author instead of
referring to them in the commit message. Another interesting insight
is the Plone project which claims to have about 300 active core de-
velopers, the code repository however only shows a number between
50 to 70 active developers at the same time. The PostgreSQL project
on the other hand gives an exact number of active and retired core
developers, only leaving out the number of minor contributors.

It is not always the case that the actual number of developers
is smaller. Projects like Fedora or Debian with a broad scope and
smaller tasks like package creation can actually have a number of
active developers which matches the claimed number. However one
has to keep in mind that the comparison of a core piece of a project
with a full operating system isn’t valid and has low relevance. That
said the size comparison must be analyzed carefully with the above
considerations in mind.

6.2.2 Communication

On a worldwide distributed project the communication within a pro-
ject is one of the most vital parts. Every project has a wide array
of communication methods in place. Quite every project uses mail-
ing lists as its favourite communication method. A plausible explana-
tion for this is probably the fact that it is easily scalable, open and
archived.

Although every project has lots of different lists for quite every as-
pect within the project, there is always one mailing list which is the
most important. This is true for GNOME with the desktop-devel, PHP
with the internals, Plone with the plone-developers, Python with the
python-dev, PostgreSQL with the pgsql-hackers, Fedora with the devel
and Debian with the debian-devel mailing list. In some projects this
single mailing list is split into two, one more general list for the pro-
ject and the second for the core project. This is the case for KDE with
the kde-devel and kde-core-devel mailing lists and MariaDB with the
maria-developers and maria-captains mailing lists. An exception is the

6.2 community 82

Drupal project which uses mailing lists however the most important
communication channel is a mailing list akin forum on their project
website.

Additionally in every project there are lots of other direct and in-
direct communications such as IRC channels, blogs, newsletters and
others.

6.2.3 Conferences

As most of the developers are living in different cities, countries or
continents, the communication is almost always handled through the
internet. Therefore conferences and meet-ups provide the possibility
to meet in person, plan and design future goals more easily and to in-
vigorate the community. Each analyzed project organizes one or more
annual conferences in place where developers and users can meet. It
is interesting to note that only after years communities started to or-
ganize them on a regular basis. It also seems that most projects ex-
isted since years before the first conference was held. Along with the
growth of a project the number of attendees at a conference grew as
well. Another interesting fact is that some projects include the con-
ference in their release and development schedule, for example the
GNOME project in which the conference provides an extra develop-
ment boost for the upcoming release in autumn.

Due to the size of the project and the worldwide distribution of
developers, each project organizes in addition frequent local meet-
ups, hackfests, sprints, smaller conferences or other workshops. These
however focus more on specific parts or goals of the project.

6.2.4 Roles

The analysis of the projects has shown, that all projects use a fairly
hierarchical development structure. Starting from the bottom of the
hierarchy there is always room for casual developers or contributors.
Moving one step up, developers or contributors get more rights but
also more responsibilities. For example one manages certain parts
of the project or provides guidance to new developers. Above these
maintainers of a certain subsystem is always a rather small group
managing the project’s development. Then, at the top there is a pro-
ject leader or a group filling the project leader role. It is also interest-
ing that some projects split the same function into two roles. Keeping
this fact and the different project scopes in mind, the used structures
are middlingly similar, especially if the projects are working within
the same field.

Of course this structure varies over time and size of the project. For
example the Debian project which has a very long history in compar-
ison to others has a filed segmentation with clear duties and respon-

6.2 community 83

Founder

Core Committer

Maintainer

Core Contributor

(a) Drupal

Release Manager

Framework Team

Core Developer

(b) Plone

BDFL

Expert

Core Developer

Developer

(c) Python

Language Designer

Author Module
Author

Developer

(d) PHP

Release Team

Maintainer Design
Team

Committer

(e) GNOME

Core Team

Release Team

Module Coordinator

Contributor

(f) KDE

Core Team

Major Contributor

Contributor

(g) PostgreSQL

Release Coordinator

Captains

Developer

(h) MariaDB

Project Board

FESCo

SIG

Developer

(i) Fedora

Project Leader

Technical Committee

Developer

Maintainer

Contributor

(j) Debian

Figure 6.1: Comparison of development related roles in the projects. Project
leaders are printed in italics, founders, leaders and release coor-
dinators are marked with �, core developers are marked with �
and co-developers are marked with �.

6.2 community 84

sibilities for each role. A younger project like MariaDB has a simpler
model, which nonetheless has the described groups on top.

A release team is a critical part of a project, either as a dedicated
team or represented by the project leader. Furthermore the concept of
having people who are responsible for certain subsystems seems to
be widely established across all bigger projects.

It is also interesting to note, that in projects where the project
founder is still active, the structure is more hierarchical with the
founder on the top. This is true for Drupal, PHP and Python. De-
bian is a special case because the original project leader passed on
his duty, but preserved the project leader hierarchy. Sometimes the
leader gathers other people around him trying to be not solely re-
sponsible for the project, such as in the MariaDB project. In projects
where the leader is no longer involved or does not hold any power,
project leader teams were established. This is true for KDE, Fedora
and GNOME.

Even if projects claim to be friendly to newcomers and an open
community, the structures analyzed here show, that one always has
to start at the bottom of the hierarchy, earning trust and providing
enhancements to the projects before being promoted on holding a
carrying business.

6.2.5 Project Founders

The project founders played a vital role during the inception of the
project. It was already explained that even if there are more project
founders, often one single person plays a leadership role. It was also
pointed out that some project founders are still active and lead the
project, while others have left their project.

Therefore the project founders of the analyzed projects can be clas-
sified into three categories. First, project founders which are still ac-
tive in the project and have a leadership position. This is the case
for the Drupal project, as well as for Python and PHP. In all of those
projects, the development structure might look different without the
leader. They define goals, releases, new features and are often the de-
cision maker. The opposite are projects where the original founder
no longer is present. Fedora, Debian and PostgreSQL are good exam-
ples here. All named projects established a leadership group which
defines the future of the project. Debian still has a project leader, who
gets voted by the community. At last there are projects, where the
original leader is still active and sometimes gives input but has no
power. In the KDE and GNOME projects the founders are working on
related projects or topics and sometimes give their opinion, but they
can’t decide anything. In the Plone and MariaDB project the founders
are members of the leadership team but have no special role. At most

6.3 release process 85

they can give their opinion and community members might give their
notion a higher value.

6.3 release process

The release process seems to be the most diverse item in this analysis,
as most projects have gone through different processes and work-
flows during their time of existence. Nevertheless some of the differ-
ent stages of the projects seem to be quite equivalent to each other.

6.3.1 Versioning Scheme

All projects, except Drupal and Fedora, use a three digit version nam-
ing scheme. It consists of a major, minor and micro number, which
characterizes a release. The Drupal project uses a two digit versioning
scheme, which defines major and minor releases. It is important to
note, that the minor releases of a major release only include bug fixes
and therefore are following the scheme of a major and micro version
number. The Fedora Project just uses a single number to represent ma-
jor releases. Due to the structure and automatic update process, bug
fixes can be included automatically in a running system. For compar-
ison the Debian project also pushes bug fixes to the users, however it
additionally releases those changes as further bug fix releases.

It is true for all projects, that an increment in the major number
defines often a backwards incompatible release with new features.
Such a major release is often a ground breaking change and often
defines a new era for the project. A major releases is generally ex-
tremely scarce. This is also reflected by the comparatively low major
number the projects have, for example GNOME 3, KDE 4, Plone 4,
Drupal 7 and so on. Fedora is an exception here, as every new release
increments the major number by one, which currently is 16.

The minor number almost always defines a feature release which is
backwards compatible to the previous major release. There are some
exceptions where this is not the case, for example in the PHP 5.x
release cycle. However those changes can be seen as minor when
comparing them to the incompatibilities of two major releases. Also,
if such changes occur, most projects provide an upgrade path. Except
Drupal and Fedora, all projects use such a number.

In some projects, an increment of the minor version number defines
a major release. In other words, regardless of whether the major or
minor number changes the release is always a major release. This is
true for GNOME, PHP and Debian.

The GNOME project always increments its minor number by two to
define a stable release cycle. An odd minor number therefore always
defines development releases.

6.3 release process 86

project major minor micro

Debian X X X

Drupal X X

Fedora X

GNOME X X X

KDE X X X

MySQL/MariaDB X X X

PHP X X X

Plone X X X

PostgreSQL X X X

Python X X X

Table 6.3: Used versioning schemes in the analyzed projects.

Micro releases are a number of subset releases for the above men-
tioned feature releases. They are only allowed to include bug and se-
curity fixes, no new features and no incompatibilities. Except Fedora,
all projects use such a number.

In a nutshell it can be said that all projects use a similar versioning
scheme with some minor exceptions, which do not have an all to big
impact.

6.3.2 Release Schedule

The release schedule leads to new major releases and often includes
minor and bug fix releases. They are therefore a vital point for each
project’s future. As such most projects have established a rather de-
tailed release schedule which they accurately try to follow. Neverthe-
less there are some differences while comparing each project’s sched-
ule which will be outlined in the following.

The most distinguished difference is the decision of a fixed release
cycle. A fixed release cycle iterates over a given time frame and pro-
vides expectable release dates. Projects like Plone, GNOME and KDE
projects use a fixed release cycle with a duration of six months. It
means, that each year there will be two major releases including a
number of minor or bug fix releases. Also Fedora uses a similar cycle,
as it is more or less bound to the GNOME release cycle. The Post-
greSQL and PHP projects use a fixed release cycle with a duration of
one year.

Although projects like Drupal and Python do not use a fixed re-
lease cycle for major releases, they do however use a fixed release
cycle for minor and bug fix releases. The Python project publishes
minor releases roughly every 18 months and bug fix releases roughly

6.3 release process 87

every six months. The Drupal project publishes bug fix releases on a
monthly basis.

Only MySQL/MariaDB and Debian do not have a fixed release
cycle. At least the Debian project is currently trying to provide a fixed
release schedule.

All projects however have some sort of freezes as part of the sched-
ule, such as code, features, translatable strings, documentation and
more. Freezes should help to confine areas where new bugs or draw-
backs could appear. Of course they are restricted to new development
and developers can still apply bug fixes. However they will be ana-
lyzed deeply before they can be applied. As such freezes are a vital
part of all analyzed project schedules. Also, they often keep in effect
for the released major branch. One of the most obvious consequences
is the fact that bug fix releases only include fixes and no new features
or user interface changes.

The most interesting facts are when the freezes occur and with
which restrictions. The GNOME project as well as the Debian project
have established a freeze shortly before their final release including
code, feature, user interfaces, API and string freezes. The freeze period
of the GNOME project however has a defined start and end date,
since the release schedule is a fixed one. The KDE project on the
other hand distributed the different freezes more evenly throughout
the release cycle. It also differentiates between soft and hard freezes.
The freezes are set in order and always have a soft freeze before a
hard freeze. This applies for features, strings and API freezes. The
Plone project is set somewhat in the middle having a feature freeze
two months before the final release and then applying more and more
restrictions during the releases of alpha, beta and release candidate
versions. The Fedora project is quite similar to that approach, however
has its feature freeze roughly three months before the final release.
Following an alpha and beta release more restrictions apply.

The Python project only allows new features until the first beta
release which occurs about two months before the final release. After
that point only bug fixes can be applied.

The PHP project has changed the layout of its schedule a lot during
the last years while trying to elaborate its yearly release schedule.
Currently the feature freeze is in act about eight months before the
final release, confining other freezes more and more until the first
alpha release. Further beta releases from that point until the final
releases do only get bug fixes.

The flexible release schedule of MySQL/MariaDB forces the project
to establish criteria when specific releases can happen. A such criteria
for a feature freeze is the publication of alpha releases. After that no
new features are allowed and only bugs get fixed. This continues until
the final release is considered to be bug free.

6.3 release process 88

No Fixed
Duration

Final Release

UI & String
Freeze

API & Feature Freeze
Code Freeze

Development
Development
Releases

(a) Drupal

Duration
6 Months

Final Release

Feature Freeze

Development

Development
Releases

(b) Plone

Duration
18 Months

Final Release

Feature
Freeze

Development

Development
Releases

(c) Python

Duration
1 Year

Final Release
Feature Freeze

Development

Decision

Discussion

Feature Pro-
posal Period

Development
Releases

(d) PHP

Duration
6 Months

Final Release
Code Freeze

String Freeze

Feature, UI,
API Freeze

Development

Decision

Discussion

Feature Pro-
posal Period

Development
Releases

(e) GNOME

Duration
6 Months

Final Release

Hard API
& Message
Freeze

Soft Message &
API, Hard Feature
Freeze

Dependency Freeze Soft Feature Freeze

Development

Development
Releases

(f) KDE

Duration
1 Year

Final Release

Commit Fest

Development

Development
Releases

(g) PostgreSQL

No Fixed
Duration

Final Release

Feature Freeze

Development

Development
Releases

(h) MariaDB

Duration
6 Months

Final Release

String Freeze

Feature Freeze
Development

Feature Submis-
sion Deadline

Development
Releases

(i) Fedora

No Fixed
Duration

Final Release

Freeze

Development

Development
Releases

(j) Debian

Figure 6.2: Schematic representation of major and minor development cy-
cles of the analyzed projects. Feature inclusion phases are
marked with � � �, freezes are marked with � � � and releases
are marked with � � �.

6.4 development 89

Like MySQL/MariaDB the Drupal project does not have a fixed
release cycle and therefore arranges the development and freezes into
different phases. Each phase comes with its freezes in the following
order code, API, feature, user interface and string freeze. After all
freezes have been declared a number of alpha, beta, release candidate
and lastly the final release is published.

The PostgreSQL has replaced a single feature freeze with a series
of Commit Fest which were explained earlier. In fact it is the only
analyzed project which does not have a single freeze but a series of
development milestones which limit new features and development
time by time.

It is also interesting to note, that every project uses some kind of
alpha, beta and release candidate versions before publishing the final
release. The naming is of course different. For example the GNOME
project does not provide a special naming, except for the odd minor
number, while other projects, such as Drupal or Debian name their
release accordingly.

6.4 development

While the release cycle defines the process around new releases, the
development process of a project defines the actual shape of it. As
such it is vital to understand how projects are being lead, structured
and divided.

6.4.1 Development Lead

The development of a project is always lead by a single person or a
group of people. All analyzed projects’ development had a form of
leadership. Each project showed a hierarchical structure when it came
to decisions related to the development of a project.

Often the development is lead by the founder, if they are still ac-
tive. In the Python, Drupal and PHP projects the original founder
has a great influence when it comes to decide on changes or new
features. Projects like Fedora, MariaDB, Plone and PostgreSQL have
established leadership groups who define the direction of the project
as well as decide over new features. While the Fedora and Plone pro-
ject have an arbitrary or elected group they do not necessarily provide
enhancements themselves. The MariaDB and PostgreSQL projects on
the other hand are mostly enhanced and lead by the same group.

While the KDE and GNOME projects have established core or re-
lease teams they do not necessarily have power on areas other than
their duties. Also due to their modular structure, the concrete devel-
opment is mostly lead by the maintainers of single areas. A minor
exception is GNOME’s design team which is involved in the shap-

6.4 development 90

ing of user interfaces. Since the team cannot dictate other GNOME
members what to do, the above assumption still holds.

The Debian project is structured very hierarchically and as such
the overall direction is set by the elected project leader. The technical
committee then looks after the concrete implementation while the
single team leaders are in place for certain areas of the project.

6.4.2 Development Workflow

The development workflow of a project defines how changes and
enhancements are brought into the project. Some of the analyzed
projects have established a feature inclusion process which will be
highlighted in the next section.

In all analyzed projects it is possible to commit small patches and
enhancements directly to the project’s repository or have it committed
by a core contributor if one has not enough rights. Such changes are
not tied to an existent feature inclusion process. As such this often
only comprises bug fixes and other changes similar in size. This is
often assisted by a bug tracking system which each of the analyzed
project uses.

It seems that all changes committed to the repositories are reviewed
by other members of the project. In case of not gaining acceptance the
patch is often discussed in the project’s mailing lists or other suitable
means of communication. It is also possible that patches are sent to
the mailing list or to a bug tracking system and discussed there be-
fore being applied. Quite all projects have some sort of team leaders
or maintainers who can decide about a certain patch for a certain
subsystem of the project.

6.4.3 Feature Inclusion Process

The feature inclusion process defines, if established, how and when
features or big changes come into a project. In the analyzed projects
a quite diverse passel of processes has been found. It ranges from
a very structured and well documented process like the one in the
Python project to a more dynamic approach like the one in the KDE
project.

The most structured and well laid-out process is Python’s PEP pro-
cess. It defines a well documented approach of new features and big
changes from its inception until either acceptance or withdrawal. This
process seems to work well for the Python community as well for de-
velopment, community and leadership processes.

Interestingly other projects started to adopt this process with minor
changes. For example the PLIP process, which is used by the Plone
project only uses it for development enhancements and not for com-

6.4 development 91

Feature
Proposal

Withdrawn

Discussion

Decision

Implementation

Accepted

(a) Drupal

Feature
Proposal

Withdrawn

Discussion

Decision

Rejected

Implementation

Review

Accepted

(b) Plone

Feature
Proposal

Withdrawn

Discussion

Decision

Rejected

Implementation

Review

Accepted

(c) Python

Feature
Proposal

Withdrawn

Discussion

Voting

Rejected

Implementation

Accepted

(d) PHP

Feature
Proposal

Withdrawn

Discussion

Decision

Rejected

Implementation

Review

Accepted

(e) GNOME

Feature
Proposal

Withdrawn

Discussion Implementation

Review

Accepted

(f) KDE

Feature
Proposal

Withdrawn

Decision

Implementation

Review

Accepted

(g) PostgreSQL

Feature
Proposal

Withdrawn

Discussion Implementation

Review

Accepted

(h) MariaDB

Feature
Proposal

Withdrawn

Discussion

Decision

Rejected

Implementation

Review

Accepted

(i) Fedora

Feature
Proposal

Withdrawn

Decision

Implementation

Accepted

(j) Debian

Figure 6.3: Schematic and simplified representation of feature inclusion pro-
cesses of the analyzed projects.

6.4 development 92

munity issues. As such the process is a simpler and more focused to
development compared to the PEP process.

Also the PHP project adopted a version of the PEP process which
is called RFC. Since it also focuses on development, it is similar to the
PLIP process. A minor difference is the separate voting step on each
proposal, which is not existent in the other two.

A slightly more dynamic approach is the Drupal initiative process
where each Drupal developer can propose an initiative with a certain
goal. At a certain point in time the Drupal project founder and leader
Dries Buytaert chooses the initiatives the project should follow for the
next release.

Similar to this, but slightly more structured and not backed by a
single person is the feature based development process of GNOME
and Fedora. In both projects, features can be proposed which are then
chosen by the GNOME release team and the FESCo. In both projects
proposals follow a certain format and are more structured when com-
pared to Drupal initiatives. Also, in both projects the named groups
have the possibility to drop or postpone a certain feature if it is not
ready for the upcoming release.

The Debian project uses goals which can be proposed by commu-
nity members and are chosen by the release team. This is antithetic
to the previous projects, since goals are just single wordings without
any structure. No concrete steps, involved parties, code or other are
trailed to the goal.

The KDE and MariaDB projects use an even more dynamic ap-
proach where members can propose features, but they have to be
picked up and implemented by developers. As such there is no real
instance which could prohibit the development of a certain feature.

The PostgreSQL project is the only project which has removed such
a specific inclusion process altogether and replaced it with a series
of Commit Fests. A feature can be brought into a Commit Fest and
evolves over time until it can be committed. Given the analysis such a
series of feature reviews is equivalent to a series of feature inclusion
processes where the goal is always to get a certain enhancement into
a project instead of discarding it directly.

7
D I S C U S S I O N

With the analysis performed and the single findings compared, this
chapter offers a discussion and comparison with related findings
and the presented software engineering methods. Finally the main
research results are outlined.

The probably most obvious common ground in the analysis was
the establishment of a project analysis catalogue, with which FOSS

projects could be analyzed systematically and satisfactorily for the
goals of this thesis. While the previous chapter described the dif-
ferences between the projects, they still share general mutuality of
structure and processes. So to say the projects are similar with equal
structures and processes when viewed in a simplified manner.

Another important issue to note is that although it was not ex-
amined in this analysis, all projects seem to evolve their structure
and processes over time. This was shown by Scacchi [Sca06], Godfrey
and Tu [GT00] but also by Johnson [Joh01] who claims that all FOSS

projects start as a closed prototype and evolve into an open project
over time.

7.1 project origin

As shown before, most projects are initiated to solve a personal is-
sue or problem. This fact has also been analyzed in related studies,
such as Raymond [Ray98], Lakhani and Wolf [LW03], Hertel, Nied-
ner and Herrmann [HNH03] or Johnson [Joh01]. In some cases the
projects develop from existing projects or scientific studies, such as
the Python project. In other the project is launched by a company
with the primary motivation of economic success.

The analysis has shown, that despite the age of a project, many
still grow at least linearly. Some projects seem to maintain stability
over time, while others, such as the PHP project, seem to decline.
Similar results have been shown by Godfrey and Tu [GT00], Roets,
Minnaar and Wright [RMW07] or Ogawa et al. [Oga+07]. Schweik
and Semenov [SS03] identified a life cycle with three phases: project
initiation, going open and project growth, stability or decline. This
definition lines up very well with the findings of this analysis.

7.2 community

In contrast to the Bazaar model by Raymond [Ray98] the project
structure in the analyzed projects was always hierarchical, even if

93

7.2 community 94

there was only a flat hierarchical structure. This affirms the find-
ings by Crowston et al. [Cro+05]. Also Bezroukov [Bez99#1; Bez99#2]
criticizes the Bazaar model as too simplistic and not matching. As
noted earlier, Ghosh [Gho05] analyzed several different models rang-
ing from hierarchical to completely flat, Bazaar like structures. The
latter was not identified in any of the analyzed projects and even if
they did differ in terms of hierarchy levels, the general hierarchical
structure was similar. That of course only is proven for the analyzed
projects and not for all FOSS projects.

This repeats itself when one analyzes the project structure with a
a leader or leadership group who drive the project. This correlates
with the findings of Johnson [Joh01], Crowston and Howison [CH05],
Warsta and Abrahamsson [WA03] and Krishnamurthy [Kri02].

While the analyzed projects do have a hierarchical structure, the
communities are nevertheless very welcoming and it seems to be rel-
atively easy to enter a community and step up the ladder. In this as-
pect the analyzed models resemble the Bazaar model, which claims
that it is very easy for new developers to join the project and take
charge of important parts of the project.

Passive Users

Active Users

Co-Developers

Core Developers

Initiator

Release
Coordinator

Figure 7.1: Free and Open Source Software project development structure as
proposed by Crowston et al. [Cro+05].

Regarding the communication within the projects, the mailing list
is the most used communication method in FOSS projects as shown
by Schweik and Semenov [SS03], Ogawa et al. [Oga+07] and Kim
[Kim03]. This finding was considered to be true, as all projects do
have mailing lists and in fact the most important communication
channel seems to be the mailing list. Most projects do have several
mailing lists in place with one or two being the most important ones
where the development of a project is planned.

7.3 release process 95

7.3 release process

An interesting fact is the move towards fixed release cycles. Most of
the analyzed projects adapted a fixed cycle and others are in the pro-
cess of transition. Fixed cycles can also be found in agile software
engineering methods, such as Extreme Programming or the Scrum
method. While not equal to those methods, the analyzed projects
seem to benefit from such an approach. The release schedule with
fixed cycles is often already fixated before development starts and
each project tries to stick to it as close as possible. Development re-
leases and freezes are quite similar in all projects. The only main
difference is the number of development releases and freezes and the
point in time when freezes occur and what part of the project they do
cover.

As shown by Mockus, Fielding and Herbsleb [MFH02] the role of
the release manager is vital for every project. The analysis reflects
this since each project has either a single person or a team in place to
manage releases, freezes and all other related duties. Also Crowston
et al. [Cro+05] rates the release managers as one of the most impor-
tant people next to the founder or leader. In some cases, this role is
also the same, especially in new projects.

7.4 development

While it certainly is not used in mature projects, the Waterfall model
by Royce [Roy70] often appears in new projects or prototypes. It is
also interesting to note, that the phases described in the Waterfall
model are often found in development processes of FOSS projects as
Roets, Minnaar and Wright [RMW07] point out. Iterative or evolu-
tionary software engineering models however are the most common
pattern, especially in mature projects. The Spiral model by Boehm
[Boe88] is a good example and gives a good first match when com-
pared to the iterative releases and development schedules. Roets, Min-
naar and Wright [RMW07] however make a strong case for the Spiral
model not being used or found in FOSS projects.

Agile methods seem to be much more appropriate when compar-
ing them with FOSS development processes. The iterative process, the
close relationship with the user and quick development and proto-
typing seem to make an argument for agile methods. However Koch
[Koc04], Warsta and Abrahamsson [WA03] proof differences between
agile methods and FOSS development methods. They point out an ar-
ray of differences, most importantly the non available co-location of
developers, in which the processes differ. However they agree that
the processes show clear similarities. For example the development
workflow of the PostgreSQL with its regular Commit Fests resembles
important steps in the Scrum software engineering method, in the

7.4 development 96

Initiation

Contribution

Review

Development

Parallel

Pre-Commit
Testing

ProductionCommunity Community

Figure 7.2: Life cycle model of Free and Open Source Software projects as
proposed by Roets, Minnaar and Wright [RMW07].

Scrum terminology named sprints. Also Roets, Minnaar and Wright
[RMW07] agree that no existing software engineering model resem-
bles the development methods of FOSS projects accurately. They ad-
mittedly come up with a proposal of a FOSS development cycle which
closely matches the given results. This proposal is based on the find-
ings by Jørgensen [Jør01].

8
C O N C L U S I O N

This thesis started with the problem and motivation of development
processes in FOSS projects. It defined the main goal of the work, which
was to analyze the development workflows of FOSS projects and to
finally find matching patterns.

Next, the used theoretical background was explained and estab-
lished. This included research methods such as the Grounded The-
ory or the Qualitative Content Analysis. The usage of such methods
was vindicated by similar research papers and studies which also
use same or similar research methods. Also traditional and agile soft-
ware engineering methods were offered for later use. As traditional
software engineering methods the Waterfall and Spiral model were
explained. The instances of agile software engineering methods were
the Extreme Programming and Scrum software engineering models.

The methodology of how projects were chosen was defined. Based
on that, FOSS projects were analyzed and categorized to find match-
ing specimens. The FOSS projects Debian, Drupal, Fedora, GNOME,
KDE, MySQL/MariaDB, PHP, Plone, PostgreSQL and Python were
chosen. Next, automated gathering of project data and the visualiza-
tion thereof was discussed and explained. This determined the fur-
ther analysis and the constitution of the work.

Data about the projects was collected and the chosen projects were
analyzed in depth using the Grounded Theory research method. Six
projects were examined thoroughly to identify a project analysis cata-
logue. Until this point the Grounded Theory approach was used. The
catalogue was then applied to the other four projects with Qualitative
Content Analysis, as proposed earlier.

Finally the outcome of the previous project analysis was compared.
According to the project analysis catalogue differences and similari-
ties between the projects were distinguished. This included all devel-
opment related parts of the projects, such as the project origin, the
community, communication and structure of the project, the release
process with its schedules and cycles, as well as each project’s de-
velopment process with the general workflow, development lead and
feature inclusion process.

The following discussion took the results of the previous analysis
and compared it with similar researches or studies. High importance
was given to a comparison with other research findings and whether
they are similar or if the found results don’t match with them.

As mentioned before the most important finding was that the pro-
ject analysis catalogue was adequate for a development process anal-

97

conclusion 98

ysis of the projects. Therefore the processes of the analyzed FOSS

projects aren’t that different after all. Of course, no project is equal
to another one, but the general processes exist in one form or another
in all other projects.

Similarities can be found already in the project’s inception phases,
which all started due to personal motivation. This generally concords
with other findings. An unexpected result was that the Bazaar model
could not be identified in any of the analyzed projects. Other re-
searchers came to the same conclusion, however the Bazaar model
is closely related to FOSS projects and therefore one would anticipate
it in most of FOSS projects. On the contrary, all projects had a hierar-
chical structure, even if they were modular or had a flat structure. It
has to be noted however, that only the core parts of the projects were
analyzed and therefore, a Bazaar like model could still be identified
around the projects. This was not analyzed in this thesis.

Despite the hierarchical structure of the projects, they are still very
welcoming to new developers and often one can quickly progress and
become a member in a leading group within the project. In this facet
the Bazaar model is reaffirmed.

Furthermore there was a noticeable move towards fixed release cy-
cles and more generally to an already pre-defined release schedule.
This is very surprising as it is a widely spread opinion that FOSS

projects do release when it’s ready. This still can be seen in several
projects, such as Debian or Drupal, however both projects have a
strong opinion for fixed release cycles and it is only be a matter of
time until they implement them.

Similar to commercial projects all analyzed projects had people or
teams in place to ensure the compliance with the release schedule.
This finding is also closely related to the previously noted hierarchical
structure in the projects.

Another important finding is that the development processes of
FOSS projects are similar between each other but cannot be resembled
by traditional or agile software engineering methods. The develop-
ment processes were all very agile and iterative. The outcome of this
is obviously an evolutionary process in which the product gets better
with each cycle. There are only a few cases known in which the pro-
ject restarted from scratch. As such the processes and development
methods found were quite different to the previously described soft-
ware engineering methods. However several aspects of each proposed
method can be found in the engineering cycles.

Finally the finding by Conway [Con68] can be corroborated and
applied to the findings. It states that the organization of a software
system is similar to the group which designed and implemented the
system. According to the findings in this thesis this not only holds
true for the final product but also for the development processes and
workflows. The Python project stands as a primary example of a very

conclusion 99

organized and structured group which also established a very formal
and textured development process.

By no means this analysis can be considered as exhaustive, as the
findings only hold for the chosen projects and their core parts. As
such, it would be interesting to apply the project analysis catalogue
to an extensive set of projects and analyze differences. A further anal-
ysis of such kind should of course establish different project selec-
tion criteria, such as less or more mature projects, but also smaller or
larger projects than the analyzed ones.

Furthermore this analysis did not have a strong focus on the mo-
tivation of developers, the community or interaction thereof. These
categories could provide material for an interesting study to see how
they empower the different structures or workflows.

Also, as noted before, projects seem to evolve parallel to their pro-
cesses over time. This raises a number of questions for future research
such as if they evolve with a similar process or if there are similar pro-
cesses or workflows to be found at similar times.

While the initial findings are promising, further research is nec-
essary. This also includes the assets and drawbacks of fixed release
cycles and why projects tend to adopt them.

Concluding this section, the work presented in this thesis provides
a consistent framework for analysis and discussion of FOSS projects.
Ideally it is able to describe processes adequately with a high focus
on reusability and integrity. Free and Open Source Software projects
are essential tools in the modern daily grind and we should be eager
to see what else we can learn from Free and Open Source Software
development processes and projects.

B I B L I O G R A P H Y

[Arm06] D. J. Armstrong. “The Quarks of Object-Oriented De-
velopment”. In: Communications of the ACM 49.2 (2006),
pp. 123–128.

[Asp05] M. Aspeli. “Plone: A Model of a Mature Open Source
Project”. Master’s Thesis. London School of Econom-
ics and Political Science, 2005.

[BA99] K. Beck and C. Andres. Extreme Programming Explained:
Embrace Change. Vol. 1. Addison-Wesley, 1999, p. 224.
isbn: 0201616416.

[BCD03] D. Bainbridge, S. J. Cunningham and J. S. Downie.
“How People Describe their Music Information Needs:
A Grounded Theory Analysis of Music Queries”. In:
Proceedings of the 4th International Conference on Music
Information Retrieval. 2003, pp. 221–222.

[Bec99] K. Beck. “Embracing Change with Extreme Program-
ming”. In: IEEE Computer 32.10 (1999), pp. 70–77.

[Bez99#1] N. Bezroukov. “A Second Look at the Cathedral and
Bazaar”. In: First Monday 4.12 (1999).

[Bez99#2] N. Bezroukov. “Open Source Software Development
as a Special Type of Academic Research (Critique of
Vulgar Raymondism)”. In: First Monday 4.10 (1999).

[Boe88] B. W. Boehm. “A Spiral Model of Software Devel-
opment and Enhancement”. In: IEEE Computer 21.5
(1988), pp. 61–72.

[BT75] V. R. Basili and A. J. Turner. “Iterative Enhancement:
A Practical Technique for Software Development”. In:
IEEE Transactions on Software Engineering SE-1.4 (1975),
pp. 390–396.

[CH05] K. Crowston and J. Howison. “The Social Structure
of Free and Open Source Software Development”. In:
First Monday 10.2 (2005).

[CM07] A. Capiluppi and M. Michlmayr. “From the Cathedral
to the Bazaar: An Empirical Study of the Lifecycle of
Volunteer Community Projects”. In: Open Source De-
velopment, Adoption and Innovation. Vol. 234. Springer,
2007, pp. 31–44.

[Con68] M. E. Conway. “How Do Committees Invent?” In:
Datamation 14.4 (1968), pp. 28–31.

100

bibliography 101

[Cro+04] K. Crowston et al. “Towards A Portfolio of FLOSS Pro-
ject Success Measures”. In: Collaboration, Conflict and
Control: The 4th Workshop on Open Source Software Engi-
neering, International Conference on Software Enginnering.
2004.

[Cro+05] K. Crowston et al. “Effective Work Practices for FLOSS
Development: A Model and Propositions”. In: Proceed-
ings of the 38th Annual Hawaii International Conference
on System Sciences. IEEE Computer Society, 2005.

[DS90] P. DeGrace and L. H. Stahl. Wicked Problems and Righ-
teous Solutions: A Catalogue of Modern Software Engineer-
ing Paradigms. Yourdon Press, 1990.

[DTB04] T. T. Dinh-Trong and J. M. Bieman. “Open Source Soft-
ware Development: A Case Study of FreeBSD”. In:
IEEE METRICS. IEEE Computer Society, 2004, pp. 96–
105.

[Ger03] D. M. German. “The GNOME Project: A Case Study
of Open Source, Global Software Development”. In:
Software Process: Improvement and Practice 8.4 (2003),
pp. 201–215.

[Gho05] R. Ghosh. “Understanding Free Software Developers:
Findings from the FLOSS Study”. In: Perspectives on
Free and Open Source Software (2005), pp. 23–46.

[Gra09] J. Grazzini. “The Open Source Phenomenon”. Work-
ing Paper. University of Turin, 2009.

[GS67] B. G. Glaser and A. L. Strauss. The Discovery of Groun-
ded Theory. Vol. 20. Aldine de Gruyter, 1967, p. 271.
isbn: 0202302601.

[GT00] M. W. Godfrey and Q. Tu. “Evolution in Open Source
Software: A Case Study”. In: The International Confer-
ence on Software Maintenance. 2000.

[Haz+06] O. Hazzan et al. “Qualitative Research in Computer
Science Education”. In: Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education
(2006), pp. 408–412.

[Hea04] H. Heath. “Developing a Grounded Theory Approach:
A Comparison of Glaser and Strauss”. In: International
Journal of Nursing Studies 41.2 (2004), pp. 141–150.

[HNH03] G. Hertel, S. Niedner and S. Herrmann. “Motivation
of Software Developers in Open Source Projects: An
Internet Based Survey of Contributors to the Linux
Kernel”. In: Research Policy 32.7 (2003), pp. 1159–1177.

bibliography 102

[Joh01] K. Johnson. “A Descriptive Process Model for Open-
Source Software Development”. Master’s Thesis. Uni-
versity of Calgary, 2001.

[Jør01] N. Jørgensen. “Putting it All in the Trunk: Incremental
Software Development in the FreeBSD Open Source
Project”. In: Information Systems Journal 11.4 (2001).

[Kim03] E. E. Kim. “An Introduction to Open Source Commu-
nities”. Working Paper. Blue Oxen Associates, 2003.

[KM94] B. Kaplan and J. A. Maxwell. “Qualitative Research
Methods for Evaluating Computer Information Sys-
tems”. In: Evaluating Health Care Information Systems
Methods and Applications. Vol. Part I. Health Informat-
ics. Sage, 1994, pp. 45–68.

[Koc04] S. Koch. “Agile Principles and Open Source Software
Development: A Theoretical and Empirical Discus-
sion”. In: Extreme Programming and Agile Processes in
Software Engineering. Lecture Notes in Computer Sci-
ence 3092. Springer, 2004, pp. 85–93.

[Kri02] S. Krishnamurthy. “Cave or Community? An Empiri-
cal Investigation of 100 Mature Open Source Projects”.
In: First Monday 7.6 (2002).

[KS02] S. Koch and G. Schneider. “Effort, Co-Operation and
Co-Ordination in an Open Source Software Project:
GNOME”. In: Information Systems Journal 12.1 (2002),
pp. 27–42.

[LH02] K. Lakhani and E. von Hippel. “How Open Source
Software Works: "Free" User-to-User Assistance”. In:
Research Policy 32.6 (2002), pp. 923–943.

[LT00] J. Lerner and J. Tirole. The Simple Economics of Open
Source. Tech. rep. 2000.

[LW03] K. Lakhani and R. G. Wolf. “Why Hackers Do What
They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects”. In: Social Science
Research Network (2003), pp. 1–27.

[Mag10] H. Magnusson. “Community in Action”. In: php archi-
tect (July 2010), pp. 35–40.

[May00] P. Mayring. “Qualitative Content Analysis”. In: Forum
Qualitative Social Research 1.2 (2000).

[May83] P. Mayring. Qualitative Inhaltsanalyse. Grundlagen und
Techniken. Vol. 10. Beltz, 1983, p. 135. isbn: 978-3-407-
25501-3.

bibliography 103

[MFH02] A. Mockus, R. T. Fielding and J. D. Herbsleb. “Two
Case Studies of Open Source Software Development:
Apache and Mozilla”. In: ACM Transactions on Software
Engineering and Methodology 11.3 (2002), pp. 309–346.

[MSABA10] O. Meerbaum-Salant, M. Armoni and M. M. Ben-Ari.
“Learning Computer Science Concepts with Scratch”.
In: Proceedings of the Sixth International Workshop on
Computing Education Research (2010), pp. 69–76.

[Oga+07] M. Ogawa et al. “Visualizing Social Interaction in
Open Source Software Projects”. In: APVIS. IEEE Com-
puter Society, 2007, pp. 25–32.

[Pan96] N. R. Pandit. “The Creation of Theory: A Recent Ap-
plication of the Grounded Theory Method”. In: The
Qualitative Report 2.4 (1996).

[PPV00] D. E. Perry, A. A. Porter and L. G. Votta. “Empirical
Studies of Software Engineering: A Roadmap”. In:
Proceedings of the Conference on the Future of Software
Engineering. ACM. 2000, pp. 345–355.

[Ray98] E. Raymond. “The Cathedral and the Bazaar”. In: First
Monday 3.3 (1998).

[RMW07] R. Roets, M. Minnaar and K. Wright. “Open Source:
Towards Successful Systems Development Projects in
Developing Countries”. In: Computers in Developing
Countries (2007).

[Roy70] W. W. Royce. “Managing the Development of Large
Software Systems”. In: Proceedings of IEEE WESCON
(1970), pp. 1–9.

[SC90] A. L. Strauss and J. M. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and Techniques.
Vol. 2. Sage, 1990, p. 270. isbn: 0803932502.

[Sca06] W. Scacchi. “Understanding Open-Source Software
Evolution”. In: Software Evolution and Feedback: Theory
and Practice. 2006, pp. 181–205.

[Sch95] K. Schwaber. “Scrum Development Process”. In: OOP-
SLA Business Object Design and Implementation (1995),
pp. 10–19.

[SLS01] S. Sarker, F. Lau and S. Sahay. “Using an Adapted
Grounded Theory Approach for Inductive Theory
Building about Virtual Team Development”. In: Data-
base for Advances in Information Systems 32.1 (2001),
pp. 38–56.

bibliography 104

[SS03] C. M. Schweik and A. Semenov. “The Institutional De-
sign of Open Source Programming: Implications for
Addressing Complex Public Policy and Management
Problems”. In: First Monday 8.1 (2003).

[SS04] D. Spinellis and C. Szyperski. “How is Open Source
Affecting Software Development?” In: IEEE Software
21.1 (2004), pp. 28–33.

[SSRD08] B. M. Sadowski, G. Sadowski-Rasters and G. Duys-
ters. “Transition of Governance in a Mature Open Soft-
ware Source Community: Evidence from the Debian
Case”. In: Information Economics and Policy 20.4 (2008),
pp. 323–332.

[Sut95] J. Sutherland. “Business Object Design and Implemen-
tation Workshop”. In: ACM SIGPLAN OOPS Messen-
ger 6.4 (1995), pp. 170–175.

[WA03] J. Warsta and P. Abrahamsson. “Is Open Source Soft-
ware Development Essentially an Agile Method?” In:
Proceedings of the 3rd Workshop on Open Source Software
Engineering 25th International Conference on Software En-
gineering. 2003, pp. 143–147.

A P P E N D I X

105

A
C O M PA R I S O N O F P R O J E C T G R A P H S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

(a) Drupal, figure 5.4 on page 25.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

(b) Plone, figure 5.10 on page 30.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

(c) Python, figure 5.17 on page 36.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

(d) PHP, figure 5.25 on page 43.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

(e) GNOME, figure 5.36 on page 52.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday

Saturday

Friday

Thursday

Wednesday

Tuesday

Monday

Hour

D
ay

(f) KDE, figure 5.43 on page 60.

Figure A.1: Overview of time based view graphs.

106

comparison of project graphs 107

2000 2002 2004 2006 2008 2010 2012
0

20

40

60

80

100

120

140

160

180

200

Time

#
C

om
m

it
s

Dries Buytaert Angie Byron Steven Wittens
Gábor Hojtsy Neil Drumm Kjartan Mannes

(a) Drupal, figure 5.1 on page 22.

2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

Time

#
C

om
m

it
s

Hanno Schlichting Martin Aspeli Alexander Limi
David Glick Wichert Akkerman Eric Steele

(b) Plone, figure 5.8 on page 29.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

Time

#
C

om
m

it
s

Guido van Rossum Fred Drake Georg Brandl
Benjamin Peterson Raymond Hettinger Jack Jansen

(c) Python, figure 5.15 on page 35.

2000 2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

Time

#
C

om
m

it
s

Ilia Alshanetsky Marcus Börger Antony Dovgal
Jani Taskinen Pierre-Alain Joye Dmitry Stogov

(d) PHP, figure 5.23 on page 42.

1996 1998 2000 2002 2004 2006 2008 2010 2012
0

100

200

300

400

500

Time

#
C

om
m

it
s

Matthias Clasen Owen Taylor Christian Persch
Alexander Larsson Emmanuele Bassi Kjartan Maraas

(e) GNOME, figure 5.31 on page 48.

1996 1998 2000 2002 2004 2006 2008 2010 2012
0

50

100

150

200

250

300

350

400

450

500

Time

#
C

om
m

it
s

David Faure Aaron J. Seigo Laurent Montel
Dirk Mueller Stephan Kulow Marco Martin

(f) KDE, figure 5.38 on page 57.

Figure A.2: Overview of commits by author graphs.

comparison of project graphs 108

2000 2002 2004 2006 2008 2010 2012

0

500

1,000

1,500

2,000

2,500

3,000

29
5

99
9

57
7

1,
14

3

1,
26

2

1,
40

0

2,
04

7

1,
80

6

1,
62

3

2,
69

6

2,
70

3

1,
70

1
Time

#
C

om
m

it
s

(a) Drupal, figure 5.2 on page 24.

2002 2004 2006 2008 2010 2012

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1,
24

2

3,
19

3

3,
39

8 4,
19

4

4,
03

8

6,
25

4

4,
08

8

7,
48

2

8,
83

8

7,
78

4

Time

#
C

om
m

it
s

(b) Plone, figure 5.9 on page 30.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

0

2,000

4,000

6,000

8,000

10,000

10
5 44

5 62
7

28
9 58

2 1,
25

6
1,

54
8 2,
16

6 2,
72

2
1,

90
0

4,
04

1
5,

92
5

5,
38

6
4,

31
1

2,
99

2
1,

86
9

4,
37

3
3,

87
0

5,
99

6
7,

64
9

9,
18

6
6,

98
1

Time

#
C

om
m

it
s

(c) Python, figure 5.16 on page 36.

1998 2000 2002 2004 2006 2008 2010 2012
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

2,
83

2

4,
95

1

4,
93

5

7,
85

9 8,
54

0

5,
46

6

7,
47

1

6,
82

9

5,
99

4

8,
16

4

6,
57

5

3,
66

5

4,
63

7

Time

#
C

om
m

it
s

(d) PHP, figure 5.24 on page 43.

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

10,000

20,000

30,000

40,000

50,000

25
6

5,
67

8

6,
81

2

12
,8

20 15
,7

10 19
,1

51

19
,0

63 22
,9

29

24
,1

49

24
,3

51 27
,8

17

39
,5

80

45
,6

14

47
,2

64

48
,6

08

Time

#
C

om
m

it
s

(e) GNOME, figure 5.32 on page 50.

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

96
6 2,

16
6

7,
53

8

16
,5

79

15
,2

08

15
,2

01

14
,2

19

11
,0

06

11
,9

03 15
,1

54

26
,1

59

29
,6

60

29
,9

47

26
,0

89

15
,5

78

Time

#
C

om
m

it
s

(f) KDE, figure 5.39 on page 58.

Figure A.3: Overview of commits by year graphs.

comparison of project graphs 109

2000 2002 2004 2006 2008 2010 2012

0

50

100

150

200

250

300

350

Time

#
C

om
m

it
s

Commits Average

(a) Drupal, figure 5.6 on page 26.

2002 2004 2006 2008 2010 2012

0

200

400

600

800

1,000

1,200

1,400

Time

#
C

om
m

it
s

Commits Average

(b) Plone, figure 5.12 on page 32.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

0

200

400

600

800

1,000

Time

#
C

om
m

it
s

Commits Average

(c) Python, figure 5.18 on page 37.

1998 2000 2002 2004 2006 2008 2010 2012

0

200

400

600

800

1,000

1,200

Time

#
C

om
m

it
s

Commits Average

(d) PHP, figure 5.28 on page 45.

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Time

#
C

om
m

it
s

Commits Average

(e) GNOME, figure 5.35 on page 52.

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

500

1,000

1,500

2,000

2,500

3,000

Time

#
C

om
m

it
s

Commits Average

(f) KDE, figure 5.41 on page 59.

Figure A.4: Overview of commits by month graphs.

comparison of project graphs 110

2000 2002 2004 2006 2008 2010 2012

0

1

2

3

4

5

6

Time

#
A

ut
ho

rs

Authors Average

(a) Drupal, figure 5.7 on page 27.

2002 2004 2006 2008 2010 2012

0

10

20

30

40

50

60

70

Time

#
A

ut
ho

rs

Authors Average

(b) Plone, figure 5.14 on page 33.

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

0

5

10

15

20

25

30

35

40

Time

#
A

ut
ho

rs

Authors Average

(c) Python, figure 5.21 on page 39.

1998 2000 2002 2004 2006 2008 2010 2012

0

10

20

30

40

50

60

Time

#
A

ut
ho

rs

Authors Average

(d) PHP, figure 5.30 on page 47.

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

50

100

150

200

250

300

350

Time

#
A

ut
ho

rs

Authors Average

(e) GNOME, figure 5.37 on page 53.

1996 1998 2000 2002 2004 2006 2008 2010 2012

0

20

40

60

80

100

120

140

160

180

Time

#
A

ut
ho

rs

Authors Average

(f) KDE, figure 5.42 on page 60.

Figure A.5: Overview of authors by month graphs.

B
P R O J E C T R E S O U R C E S

All stated websites were last checked on December 31st, 2011. Whenever
possible, the publication date was added to the citation.

b.1 drupal

[Bui] BuiltWith. Drupal Usage Trends. url: http://trends.
builtwith.com/cms/Drupal.

[Buy11] D. Buytaert. Drupal Contributor Statistics. June 2011.
url: http://buytaert.net/drupal-contributor-
statistics-2011.

[W3T#1] W3Techs. Usage Statistics and Market Share of Content
Management Systems for Websites. url: http://w3techs.
com/technologies/overview/content_management/

all.

[Wal11] J. Walling. Drupal Events. Nov. 2011. url: http://www.
listology.com/jwalling/list/drupal-events.

[Dru#1] Drupal Project. Core Developers. url: http://drupal.
org/node/21778.

[Dru#2] Drupal Project. Drupal Core Initiatives. url: http://
drupal.org/community-initiatives/drupal-core.

[Dru#3] Drupal Project. Drupal Core’s Release Cycle. url: http:
//drupal.org/node/935558.

[Dru#4] Drupal Project. History. url: http://drupal.org/
about/history.

[Dru#5] Drupal Project. The Drupal Overview. url: http://
drupal.org/node/265726.

[Dru#6] Drupal Project. Upgrading from Previous Versions. url:
http://drupal.org/upgrade.

b.2 plone

[Asp05] M. Aspeli. “Plone: A Model of a Mature Open Source
Project”. Master’s Thesis. London School of Econom-
ics and Political Science, 2005.

[Bla11] Black Duck Software Inc. Ohloh Plone Factoids. 2011.
url: http://www.ohloh.net/p/plone/factoids.

111

http://trends.builtwith.com/cms/Drupal
http://trends.builtwith.com/cms/Drupal
http://buytaert.net/drupal-contributor-statistics-2011
http://buytaert.net/drupal-contributor-statistics-2011
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all
http://www.listology.com/jwalling/list/drupal-events
http://www.listology.com/jwalling/list/drupal-events
http://drupal.org/node/21778
http://drupal.org/node/21778
http://drupal.org/community-initiatives/drupal-core
http://drupal.org/community-initiatives/drupal-core
http://drupal.org/node/935558
http://drupal.org/node/935558
http://drupal.org/about/history
http://drupal.org/about/history
http://drupal.org/node/265726
http://drupal.org/node/265726
http://drupal.org/upgrade
http://www.ohloh.net/p/plone/factoids

project resources 112

[Plo#1] Plone Project. Community Processes. url: http://dev.
plone.org/wiki/CommunityProcesses.

[Plo#2] Plone Project. How You Can Contribute to Plone. url:
http://dev.plone.org/wiki/ContributePlone.

[Plo#3] Plone Project. PLIP Lifecycle. url: http://dev.plone.
org/wiki/PLIPLifecycle.

[Plo#4] Plone Project. PLIP Process. url: http://dev.plone.
org/wiki/PlipProcess.

[Plo#5] Plone Project. Plone Conferences. url: http://plone.
org/events/conferences.

[Plo#6] Plone Project. Plone FAQ. url: http://plone.org/
documentation/faq.

[Plo#7] Plone Project. Plone Founders. url: http://plone.org/
team.

[Plo#8] Plone Project. Plone Framework Team. url: http://dev.
plone.org/wiki/FrameworkTeam.

[Plo#9] Plone Project. Plone Release Managers. url: http://
plone.org/team/ReleaseManagers.

[Plo#10] Plone Project. Plone Release Process. url: http://dev.
plone.org/wiki/ReleaseProcess.

[Plo#11] Plone Project. Plone Sprints. url: http://plone.org/
events/sprints.

[Plo#12] Plone Project. Releases. url: http : / / plone . org /
products/plone/releases.

[Plo#13] Plone Project. What is Plone? url: http://plone.org/
about/.

[Plo04] Plone Project. Plone Gets Paid Release Manager. Oct.
2004. url: http://plone.org/news/plone- gets-
paid-release-management.

[Plo11] Plone Project. Plone Alters PLIP Process to Implement
a 6 Month Fixed Release Cycle. Mar. 2011. url: http:
//plone.org/news/newsixmonthreleasecycle.

b.3 python

[Ven03] B. Venners. The Making of Python - A Conversation with
Guido van Rossum, Part I. Jan. 2003. url: http://www.
artima.com/intv/pythonP.html.

[War02] B. Warsaw. Voting Guidelines – PEP 10. Mar. 2002. url:
http://www.python.org/dev/peps/pep-0010/.

http://dev.plone.org/wiki/CommunityProcesses
http://dev.plone.org/wiki/CommunityProcesses
http://dev.plone.org/wiki/ContributePlone
http://dev.plone.org/wiki/PLIPLifecycle
http://dev.plone.org/wiki/PLIPLifecycle
http://dev.plone.org/wiki/PlipProcess
http://dev.plone.org/wiki/PlipProcess
http://plone.org/events/conferences
http://plone.org/events/conferences
http://plone.org/documentation/faq
http://plone.org/documentation/faq
http://plone.org/team
http://plone.org/team
http://dev.plone.org/wiki/FrameworkTeam
http://dev.plone.org/wiki/FrameworkTeam
http://plone.org/team/ReleaseManagers
http://plone.org/team/ReleaseManagers
http://dev.plone.org/wiki/ReleaseProcess
http://dev.plone.org/wiki/ReleaseProcess
http://plone.org/events/sprints
http://plone.org/events/sprints
http://plone.org/products/plone/releases
http://plone.org/products/plone/releases
http://plone.org/about/
http://plone.org/about/
http://plone.org/news/plone-gets-paid-release-management
http://plone.org/news/plone-gets-paid-release-management
http://plone.org/news/newsixmonthreleasecycle
http://plone.org/news/newsixmonthreleasecycle
http://www.artima.com/intv/pythonP.html
http://www.artima.com/intv/pythonP.html
http://www.python.org/dev/peps/pep-0010/

project resources 113

[WHG00] B. Warsaw, J. Hylton and D. Goodger. PEP Purpose
and Guidelines – PEP 1. June 2000. url: http://www.
python.org/dev/peps/pep-0001/.

[WR01] B. Warsaw and G. van Rossum. Doing Python Releases
– PEP 101. Aug. 2001. url: http://www.python.org/
dev/peps/pep-0101/.

[Pyt#1] Python Software Foundation. Conferences and Work-
shops. url: http://www.python.org/community/
workshops/.

[Pyt#2] Python Software Foundation. Development Cycle. url:
http://docs.python.org/devguide/devcycle.html.

[Pyt#3] Python Software Foundation. Following Python’s Devel-
opment. url: http://docs.python.org/devguide/
communication.html.

[Pyt#4] Python Software Foundation. History and License. url:
http://docs.python.org/license.html.

[Pyt#5] Python Software Foundation. How to Become a Core
Developer. url: http://docs.python.org/devguide/
coredev.html.

[Pyt#6] Python Software Foundation. What is Python? Execu-
tive Summary. url: http://www.python.org/doc/
essays/blurb/.

b.4 php

[Mag10] H. Magnusson. “Community in Action”. In: php archi-
tect (July 2010), pp. 35–40.

[W3T#2] W3Techs. Usage Statistics and Market Share of Server-
Side Programming Languages for Websites. url: http://
w3techs.com/technologies/overview/programming_

language/all.

[PHP#1] PHP Group. Credits. url: http : / / www . php . net /
credits.php.

[PHP#2] PHP Group. History of PHP. url: http://www.php.
net/manual/en/history.php.php.

[PHP#3] PHP Group. PHP Conferences Around the World. url:
http://www.php.net/conferences/index.php.

[PHP#4] PHP Group. PHP Manual. url: http://www.php.net/
manual/en/index.php.

[PHP#5] PHP Group. Request for Comments. url: https://wiki.
php.net/rfc.

http://www.python.org/dev/peps/pep-0001/
http://www.python.org/dev/peps/pep-0001/
http://www.python.org/dev/peps/pep-0101/
http://www.python.org/dev/peps/pep-0101/
http://www.python.org/community/workshops/
http://www.python.org/community/workshops/
http://docs.python.org/devguide/devcycle.html
http://docs.python.org/devguide/communication.html
http://docs.python.org/devguide/communication.html
http://docs.python.org/license.html
http://docs.python.org/devguide/coredev.html
http://docs.python.org/devguide/coredev.html
http://www.python.org/doc/essays/blurb/
http://www.python.org/doc/essays/blurb/
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://www.php.net/credits.php
http://www.php.net/credits.php
http://www.php.net/manual/en/history.php.php
http://www.php.net/manual/en/history.php.php
http://www.php.net/conferences/index.php
http://www.php.net/manual/en/index.php
http://www.php.net/manual/en/index.php
https://wiki.php.net/rfc
https://wiki.php.net/rfc

project resources 114

[PHP#6] PHP Group. RFC Release Process. url: https://wiki.
php.net/rfc/releaseprocess.

[PHP#7] PHP Group. RFC Voting on PHP features. url: https:
//wiki.php.net/rfc/voting.

[PHP#8] PHP Group. RFC Who can Vote? url: https://wiki.
php.net/rfc/voting_who.

[PHP#9] PHP Group. What can PHP do? url: http://www.php.
net/manual/en/intro-whatcando.php.

[PHP07] PHP Group. PHP Usage Stats. July 2007. url: http:
//www.php.net/usage.php.

b.5 gnome

[Ger03] D. M. German. “The GNOME Project: A Case Study
of Open Source, Global Software Development”. In:
Software Process: Improvement and Practice 8.4 (2003),
pp. 201–215.

[GNO#1] GNOME Project. About GUADEC 2012. url: http://
guadec.org/?q=node/3.

[GNO#2] GNOME Project. About Us. url: http://www.gnome.
org/about/.

[GNO#3] GNOME Project. Design Team. url: https://live.
gnome.org/Design.

[GNO#4] GNOME Project. GNOME 3.3.x Development Series.
url: https://live.gnome.org/ThreePointThree.

[GNO#5] GNOME Project. GNOME Human Interface Guidelines.
url: http://developer.gnome.org/hig-book/.

[GNO#6] GNOME Project. GNOME Release Schedule. url: https:
//live.gnome.org/Schedule.

[GNO#7] GNOME Project. Guide for New Release Team Members.
url: https://live.gnome.org/ReleasePlanning/
NewReleaseTeamMembers.

[GNO#8] GNOME Project. Proposed Features for GNOME 3.4.
url: https://live.gnome.org/ThreePointThree/
Features.

[GNO#9] GNOME Project. Road Map. url: https://live.gnome.
org/RoadMap.

[GNO#10] GNOME Project. Teams. url: http://www.gnome.org/
teams/.

[GNO11] GNOME Project. GNOME 3.0 released. Apr. 2011. url:
http://www.gnome.org/press/2011/04/gnome-3-0-

released-better-for-users-developers-3/.

https://wiki.php.net/rfc/releaseprocess
https://wiki.php.net/rfc/releaseprocess
https://wiki.php.net/rfc/voting
https://wiki.php.net/rfc/voting
https://wiki.php.net/rfc/voting_who
https://wiki.php.net/rfc/voting_who
http://www.php.net/manual/en/intro-whatcando.php
http://www.php.net/manual/en/intro-whatcando.php
http://www.php.net/usage.php
http://www.php.net/usage.php
http://guadec.org/?q=node/3
http://guadec.org/?q=node/3
http://www.gnome.org/about/
http://www.gnome.org/about/
https://live.gnome.org/Design
https://live.gnome.org/Design
https://live.gnome.org/ThreePointThree
http://developer.gnome.org/hig-book/
https://live.gnome.org/Schedule
https://live.gnome.org/Schedule
https://live.gnome.org/ReleasePlanning/NewReleaseTeamMembers
https://live.gnome.org/ReleasePlanning/NewReleaseTeamMembers
https://live.gnome.org/ThreePointThree/Features
https://live.gnome.org/ThreePointThree/Features
https://live.gnome.org/RoadMap
https://live.gnome.org/RoadMap
http://www.gnome.org/teams/
http://www.gnome.org/teams/
http://www.gnome.org/press/2011/04/gnome-3-0-released-better-for-users-developers-3/
http://www.gnome.org/press/2011/04/gnome-3-0-released-better-for-users-developers-3/

project resources 115

[GNO97] GNOME Project. The GNOME Desktop Project. Aug.
1997. url: http://mail.gnome.org/archives/gtk-
list/1997-August/msg00123.html.

b.6 kde

[KDE#1] KDE Project. About KDE. url: http : / / kde . org /
community/whatiskde/.

[KDE#2] KDE Project. Contribute. url: http://techbase.kde.
org/Contribute.

[KDE#3] KDE Project. Development Model. url: http://kde.
org/community/whatiskde/devmodel.php.

[KDE#4] KDE Project. General FAQ. url: http://techbase.kde.
org/Development/FAQs/General_FAQ.

[KDE#5] KDE Project. Get a Contributor Account. url: http://
techbase.kde.org/Contribute/Get_a_Contributor_

Account.

[KDE#6] KDE Project. KDE 4.8 Release Schedule. url: http://
techbase.kde.org/Schedules/KDE4/4.8_Release_

Schedule.

[KDE#7] KDE Project. KDE History. url: http://kde.org/
community/history/.

[KDE#8] KDE Project. KDE Software Compilation. url: http://
kde.org/community/whatiskde/softwarecompilation.

php.

[KDE#9] KDE Project. Press Page. url: http : / / kde . org /
presspage/.

[KDE#10] KDE Project. Project Management. url: http://kde.
org/community/whatiskde/management.php.

[KDE#11] KDE Project. Release Team. url: http://techbase.kde.
org/Projects/Release_Team.

[KDE#12] KDE Project. Schedules. url: http://techbase.kde.
org/Schedules.

[KDE96] KDE Project. KDE Project Announcement. Oct. 1996.
url: http://kde.org/documentation/posting.txt.

b.7 postgresql

[Pos#1] PostgreSQL Global Development Group. About. url:
http://www.postgresql.org/about/.

[Pos#2] PostgreSQL Global Development Group. Awards. url:
http://www.postgresql.org/about/awards/.

http://mail.gnome.org/archives/gtk-list/1997-August/msg00123.html
http://mail.gnome.org/archives/gtk-list/1997-August/msg00123.html
http://kde.org/community/whatiskde/
http://kde.org/community/whatiskde/
http://techbase.kde.org/Contribute
http://techbase.kde.org/Contribute
http://kde.org/community/whatiskde/devmodel.php
http://kde.org/community/whatiskde/devmodel.php
http://techbase.kde.org/Development/FAQs/General_FAQ
http://techbase.kde.org/Development/FAQs/General_FAQ
http://techbase.kde.org/Contribute/Get_a_Contributor_Account
http://techbase.kde.org/Contribute/Get_a_Contributor_Account
http://techbase.kde.org/Contribute/Get_a_Contributor_Account
http://techbase.kde.org/Schedules/KDE4/4.8_Release_Schedule
http://techbase.kde.org/Schedules/KDE4/4.8_Release_Schedule
http://techbase.kde.org/Schedules/KDE4/4.8_Release_Schedule
http://kde.org/community/history/
http://kde.org/community/history/
http://kde.org/community/whatiskde/softwarecompilation.php
http://kde.org/community/whatiskde/softwarecompilation.php
http://kde.org/community/whatiskde/softwarecompilation.php
http://kde.org/presspage/
http://kde.org/presspage/
http://kde.org/community/whatiskde/management.php
http://kde.org/community/whatiskde/management.php
http://techbase.kde.org/Projects/Release_Team
http://techbase.kde.org/Projects/Release_Team
http://techbase.kde.org/Schedules
http://techbase.kde.org/Schedules
http://kde.org/documentation/posting.txt
http://www.postgresql.org/about/
http://www.postgresql.org/about/awards/

project resources 116

[Pos#3] PostgreSQL Global Development Group. Commit Fest.
url: http://wiki.postgresql.org/wiki/CommitFest.

[Pos#4] PostgreSQL Global Development Group. Contributor
Profiles. url: http://www.postgresql.org/community/
contributors/.

[Pos#5] PostgreSQL Global Development Group. Developer
FAQ. url: http://wiki.postgresql.org/wiki/
Developer_FAQ.

[Pos#6] PostgreSQL Global Development Group. Downloads.
url: http://www.postgresql.org/download/.

[Pos#7] PostgreSQL Global Development Group. Events. url:
http://www.postgresql.org/about/eventarchive/.

[Pos#8] PostgreSQL Global Development Group. Frequently
Asked Press Questions. url: http://www.postgresql.
org/about/press/faq/.

[Pos#9] PostgreSQL Global Development Group. History. url:
http://www.postgresql.org/about/history/.

[Pos#10] PostgreSQL Global Development Group. License. url:
http://www.postgresql.org/about/licence/.

[Pos#11] PostgreSQL Global Development Group. PostgreSQL
9.1 Press Kit. url: http://www.postgresql.org/about/
press/presskit91/.

[Pos#12] PostgreSQL Global Development Group. PostgreSQL
9.2 Development Plan. url: http://wiki.postgresql.
org/wiki/PostgreSQL_9.2_Development_Plan.

[Pos#13] PostgreSQL Global Development Group. Running a
Commit Fest. url: http://wiki.postgresql.org/wiki/
Running_a_CommitFest.

[Pos#14] PostgreSQL Global Development Group. Versioning
Policy. url: http://www.postgresql.org/support/
versioning/.

b.8 mysql/mariadb

[Mon#1] Monty Program Ab. About MariaDB. url: http://kb.
askmonty.org/en/about-mariadb.

[Mon#2] Monty Program Ab. Contributing Code. url: http://
kb.askmonty.org/en/contributing-code.

[Mon#3] Monty Program Ab. Contributing to the MariaDB Pro-
ject. url: http://kb.askmonty.org/en/community-
contributing-to-the-mariadb-project.

http://wiki.postgresql.org/wiki/CommitFest
http://www.postgresql.org/community/contributors/
http://www.postgresql.org/community/contributors/
http://wiki.postgresql.org/wiki/Developer_FAQ
http://wiki.postgresql.org/wiki/Developer_FAQ
http://www.postgresql.org/download/
http://www.postgresql.org/about/eventarchive/
http://www.postgresql.org/about/press/faq/
http://www.postgresql.org/about/press/faq/
http://www.postgresql.org/about/history/
http://www.postgresql.org/about/licence/
http://www.postgresql.org/about/press/presskit91/
http://www.postgresql.org/about/press/presskit91/
http://wiki.postgresql.org/wiki/PostgreSQL_9.2_Development_Plan
http://wiki.postgresql.org/wiki/PostgreSQL_9.2_Development_Plan
http://wiki.postgresql.org/wiki/Running_a_CommitFest
http://wiki.postgresql.org/wiki/Running_a_CommitFest
http://www.postgresql.org/support/versioning/
http://www.postgresql.org/support/versioning/
http://kb.askmonty.org/en/about-mariadb
http://kb.askmonty.org/en/about-mariadb
http://kb.askmonty.org/en/contributing-code
http://kb.askmonty.org/en/contributing-code
http://kb.askmonty.org/en/community-contributing-to-the-mariadb-project
http://kb.askmonty.org/en/community-contributing-to-the-mariadb-project

project resources 117

[Mon#4] Monty Program Ab. MariaDB Roadmap. url: http :
//kb.askmonty.org/en/mariadb-roadmap.

[Mon#5] Monty Program Ab. Plans for 5.6. url: http://kb.
askmonty.org/en/plans-for-56.

[Mon#6] Monty Program Ab. Release Coordinator. url: http:
//kb.askmonty.org/en/release-coordinator.

[Mon#7] Monty Program Ab. Release Criteria. url: http://kb.
askmonty.org/en/release-criteria.

[Mon#8] Monty Program Ab. What Are the Criteria for Becoming
a Maria-Captain? url: http://kb.askmonty.org/en/
what-are-the-criteria-for-becoming-a-maria-

captain.

[Mon#9] Monty Program Ab. What is MariaDB 5.1. url: http:
//kb.askmonty.org/en/what-is-mariadb-51.

[Mon#10] Monty Program Ab. What License Does MariaDB Use?
url: http://kb.askmonty.org/en/what-license-
does-mariadb-use.

[Mon#11] Monty Program Ab. Where Are Other Users and Devel-
opers of MariaDB? url: http://kb.askmonty.org/
en/where-are-other-users-and-developers-of-

mariadb.

[Mon#12] Monty Program Ab. Who is Behind MariaDB? url:
http://kb.askmonty.org/en/who- is- behind-

mariadb.

[Ora#1] Oracle Corporation. Choosing Which Version of MySQL
to Install. url: http://dev.mysql.com/doc/refman/5.
1/en/choosing-version.html.

[Ora#2] Oracle Corporation. History of MySQL. url: http://
dev.mysql.com/doc/refman/5.6/en/history.html.

[Ora#3] Oracle Corporation. MySQL Users Conference & Expo.
url: http://www.mysql.com/news-and-events/users-
conference/2010/.

[Ora10] Oracle Corporation. Oracle Completes Acquisition of
Sun. Jan. 2010. url: http://www.oracle.com/us/
corporate/press/044428.

[Sun08] Sun Microsystems Inc. Sun to Acquire MySQL. Jan.
2008. url: http : / / www . mysql . com / news - and -
events/sun-to-acquire-mysql.html.

b.9 fedora

[Fed#1] Fedora Project. Board. url: http://fedoraproject.
org/wiki/Board.

http://kb.askmonty.org/en/mariadb-roadmap
http://kb.askmonty.org/en/mariadb-roadmap
http://kb.askmonty.org/en/plans-for-56
http://kb.askmonty.org/en/plans-for-56
http://kb.askmonty.org/en/release-coordinator
http://kb.askmonty.org/en/release-coordinator
http://kb.askmonty.org/en/release-criteria
http://kb.askmonty.org/en/release-criteria
http://kb.askmonty.org/en/what-are-the-criteria-for-becoming-a-maria-captain
http://kb.askmonty.org/en/what-are-the-criteria-for-becoming-a-maria-captain
http://kb.askmonty.org/en/what-are-the-criteria-for-becoming-a-maria-captain
http://kb.askmonty.org/en/what-is-mariadb-51
http://kb.askmonty.org/en/what-is-mariadb-51
http://kb.askmonty.org/en/what-license-does-mariadb-use
http://kb.askmonty.org/en/what-license-does-mariadb-use
http://kb.askmonty.org/en/where-are-other-users-and-developers-of-mariadb
http://kb.askmonty.org/en/where-are-other-users-and-developers-of-mariadb
http://kb.askmonty.org/en/where-are-other-users-and-developers-of-mariadb
http://kb.askmonty.org/en/who-is-behind-mariadb
http://kb.askmonty.org/en/who-is-behind-mariadb
http://dev.mysql.com/doc/refman/5.1/en/choosing-version.html
http://dev.mysql.com/doc/refman/5.1/en/choosing-version.html
http://dev.mysql.com/doc/refman/5.6/en/history.html
http://dev.mysql.com/doc/refman/5.6/en/history.html
http://www.mysql.com/news-and-events/users-conference/2010/
http://www.mysql.com/news-and-events/users-conference/2010/
http://www.oracle.com/us/corporate/press/044428
http://www.oracle.com/us/corporate/press/044428
http://www.mysql.com/news-and-events/sun-to-acquire-mysql.html
http://www.mysql.com/news-and-events/sun-to-acquire-mysql.html
http://fedoraproject.org/wiki/Board
http://fedoraproject.org/wiki/Board

project resources 118

[Fed#2] Fedora Project. Communicating and Getting Help. url:
http://fedoraproject.org/wiki/Communicate.

[Fed#3] Fedora Project. Features Policy Guidelines. url: http:
//fedoraproject.org/wiki/Features/Policy.

[Fed#4] Fedora Project. Fedora Engineering Steering Committee.
url: http://fedoraproject.org/wiki/Fedora_
Engineering_Steering_Committee.

[Fed#5] Fedora Project. Fedora Release Life Cycle. url: http :
//fedoraproject.org/wiki/LifeCycle.

[Fed#6] Fedora Project. Fedora Weekly Newsletter. url: http:
//fedoraproject.org/wiki/FWN.

[Fed#7] Fedora Project. FUDCon. url: http://fedoraproject.
org/wiki/FUDCon.

[Fed#8] Fedora Project. Historical Fedora Release Schedules. url:
http : / / fedoraproject . org / wiki / Releases /

HistoricalSchedules.

[Fed#9] Fedora Project. Join. url: https://fedoraproject.
org/wiki/Join.

[Fed#10] Fedora Project. Licensing Guidelines. url: https://
fedoraproject.org/wiki/Licensing.

[Fed#11] Fedora Project. Release Engineering. url: http : / /
fedoraproject . org / wiki / ReleaseEngineering /

Overview.

[Fed#12] Fedora Project. SIGs. url: http://fedoraproject.org/
wiki/SIGs.

[Fed#13] Fedora Project. Statistics. url: http://fedoraproject.
org/wiki/Statistics#Contributors.

[Fed#14] Fedora Project. Warren Togami Biography. url: http:
//fedoraproject.org/wiki/User:Wtogami.

[Fed#15] Fedora Project. What is Fedora and what Makes it Differ-
ent. url: https://fedoraproject.org/about-fedora.

b.10 debian

[McG11] N. McGovern. Bits from the Release Team. June 2011.
url: http://lists.debian.org/debian- devel-
announce/2011/06/msg00003.html.

[Per11] C. Perrier. Developers per Country. June 2011. url: http:
//www.perrier.eu.org/weblog/2011/06/12#devel-

countries-201106-3.

http://fedoraproject.org/wiki/Communicate
http://fedoraproject.org/wiki/Features/Policy
http://fedoraproject.org/wiki/Features/Policy
http://fedoraproject.org/wiki/Fedora_Engineering_Steering_Committee
http://fedoraproject.org/wiki/Fedora_Engineering_Steering_Committee
http://fedoraproject.org/wiki/LifeCycle
http://fedoraproject.org/wiki/LifeCycle
http://fedoraproject.org/wiki/FWN
http://fedoraproject.org/wiki/FWN
http://fedoraproject.org/wiki/FUDCon
http://fedoraproject.org/wiki/FUDCon
http://fedoraproject.org/wiki/Releases/HistoricalSchedules
http://fedoraproject.org/wiki/Releases/HistoricalSchedules
https://fedoraproject.org/wiki/Join
https://fedoraproject.org/wiki/Join
https://fedoraproject.org/wiki/Licensing
https://fedoraproject.org/wiki/Licensing
http://fedoraproject.org/wiki/ReleaseEngineering/Overview
http://fedoraproject.org/wiki/ReleaseEngineering/Overview
http://fedoraproject.org/wiki/ReleaseEngineering/Overview
http://fedoraproject.org/wiki/SIGs
http://fedoraproject.org/wiki/SIGs
http://fedoraproject.org/wiki/Statistics#Contributors
http://fedoraproject.org/wiki/Statistics#Contributors
http://fedoraproject.org/wiki/User:Wtogami
http://fedoraproject.org/wiki/User:Wtogami
https://fedoraproject.org/about-fedora
http://lists.debian.org/debian-devel-announce/2011/06/msg00003.html
http://lists.debian.org/debian-devel-announce/2011/06/msg00003.html
http://www.perrier.eu.org/weblog/2011/06/12#devel-countries-201106-3
http://www.perrier.eu.org/weblog/2011/06/12#devel-countries-201106-3
http://www.perrier.eu.org/weblog/2011/06/12#devel-countries-201106-3

project resources 119

[SSRD08] B. M. Sadowski, G. Sadowski-Rasters and G. Duys-
ters. “Transition of Governance in a Mature Open Soft-
ware Source Community: Evidence from the Debian
Case”. In: Information Economics and Policy 20.4 (2008),
pp. 323–332.

[Deb#1] Debian Project. A Brief History of Debian. url: http:
//www.debian.org/doc/manuals/project-history/.

[Deb#2] Debian Project. About Debian. url: http://www.debian.
org/intro/about.

[Deb#3] Debian Project. DebConf. url: http://debconf.org/.

[Deb#4] Debian Project. Debian Developer. url: http://wiki.
debian.org/DebianDeveloper.

[Deb#5] Debian Project. Debian Maintainer. url: http://wiki.
debian.org/DebianMaintainer.

[Deb#6] Debian Project. Debian New Members Corner. url: http:
//www.debian.org/devel/join/newmaint.

[Deb#7] Debian Project. Debian Release Management. url: http:
//release.debian.org/.

[Deb#8] Debian Project. Debian Releases. url: http : / / www .
debian.org/releases/.

[Deb#9] Debian Project. Debian Voting Information. url: http:
//www.debian.org/vote/.

[Deb#10] Debian Project. Debian’s Organizational Structure. url:
http://www.debian.org/intro/organization.

[Deb#11] Debian Project. License information. url: http://www.
debian.org/legal/licenses/index.en.html.

[Deb#12] Debian Project. Mailing Lists. url: http://www.debian.
org/MailingLists/.

[Deb#13] Debian Project. Ports. url: http://www.debian.org/
ports/.

[Deb#14] Debian Project. The Debian GNU/Linux FAQ. url: http:
//www.debian.org/doc/manuals/debian-faq/.

[Deb09] Debian Project. Debian GNU/Linux 6.0 "Squeeze" Re-
lease Goals. July 2009. url: http://www.debian.org/
News/2009/20090730.en.html.

http://www.debian.org/doc/manuals/project-history/
http://www.debian.org/doc/manuals/project-history/
http://www.debian.org/intro/about
http://www.debian.org/intro/about
http://debconf.org/
http://wiki.debian.org/DebianDeveloper
http://wiki.debian.org/DebianDeveloper
http://wiki.debian.org/DebianMaintainer
http://wiki.debian.org/DebianMaintainer
http://www.debian.org/devel/join/newmaint
http://www.debian.org/devel/join/newmaint
http://release.debian.org/
http://release.debian.org/
http://www.debian.org/releases/
http://www.debian.org/releases/
http://www.debian.org/vote/
http://www.debian.org/vote/
http://www.debian.org/intro/organization
http://www.debian.org/legal/licenses/index.en.html
http://www.debian.org/legal/licenses/index.en.html
http://www.debian.org/MailingLists/
http://www.debian.org/MailingLists/
http://www.debian.org/ports/
http://www.debian.org/ports/
http://www.debian.org/doc/manuals/debian-faq/
http://www.debian.org/doc/manuals/debian-faq/
http://www.debian.org/News/2009/20090730.en.html
http://www.debian.org/News/2009/20090730.en.html

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Problem and Motivation
	1.2 Outline of the Thesis

	2 Theoretical Background
	2.1 Grounded Theory
	2.2 Qualitative Content Analysis
	2.3 Application in Computer Science
	2.4 Software Engineering Comparison Models
	2.4.1 Traditional Software Engineering Models
	2.4.2 Agile Software Engineering Models

	3 Related Work
	3.1 Project Structure
	3.2 Motivation
	3.3 Software Engineering
	3.4 Case Studies

	4 Methodology
	4.1 Project Selection
	4.1.1 Category
	4.1.2 Popularity
	4.1.3 Project Age
	4.1.4 Activity
	4.1.5 Community

	4.2 Final Selection
	4.3 Visualization of Project Data
	4.3.1 Commits by Author
	4.3.2 Commits by Year
	4.3.3 Time Based View
	4.3.4 Commits by Month
	4.3.5 Authors by Month

	5 Development Process Analysis
	5.1 Drupal Project Analysis
	5.1.1 History
	5.1.2 Community
	5.1.3 Release Process
	5.1.4 Development

	5.2 Plone Project Analysis
	5.2.1 History
	5.2.2 Community
	5.2.3 Release Process
	5.2.4 Development

	5.3 Python Project Analysis
	5.3.1 History
	5.3.2 Community
	5.3.3 Release Process
	5.3.4 Development

	5.4 PHP Project Analysis
	5.4.1 History
	5.4.2 Community
	5.4.3 Release Process
	5.4.4 Development

	5.5 GNOME Project Analysis
	5.5.1 History
	5.5.2 Community
	5.5.3 Release Process
	5.5.4 Development

	5.6 KDE Project Analysis
	5.6.1 History
	5.6.2 Community
	5.6.3 Release Process
	5.6.4 Development

	5.7 Proposition for a Project Analysis Catalogue
	5.7.1 Description of the Project
	5.7.2 Project Category
	5.7.3 Scope of Analysis
	5.7.4 License
	5.7.5 History
	5.7.6 Community
	5.7.7 Release Process
	5.7.8 Development

	5.8 PostgreSQL Project Analysis
	5.8.1 Project Category
	5.8.2 Scope of Analysis
	5.8.3 License
	5.8.4 History
	5.8.5 Community
	5.8.6 Release Process
	5.8.7 Development

	5.9 MySQL/MariaDB Project Analysis
	5.9.1 Project Category
	5.9.2 Scope of Analysis
	5.9.3 License
	5.9.4 History
	5.9.5 Community
	5.9.6 Release Process
	5.9.7 Development

	5.10 Fedora Project Analysis
	5.10.1 Project Category
	5.10.2 Scope of Analysis
	5.10.3 License
	5.10.4 History
	5.10.5 Community
	5.10.6 Release Process
	5.10.7 Development

	5.11 Debian Project Analysis
	5.11.1 Project Category
	5.11.2 Scope of Analysis
	5.11.3 License
	5.11.4 History
	5.11.5 Community
	5.11.6 Release Process
	5.11.7 Development

	6 Comparison of Development Processes
	6.1 Project Origin
	6.2 Community
	6.2.1 Community Size
	6.2.2 Communication
	6.2.3 Conferences
	6.2.4 Roles
	6.2.5 Project Founders

	6.3 Release Process
	6.3.1 Versioning Scheme
	6.3.2 Release Schedule

	6.4 Development
	6.4.1 Development Lead
	6.4.2 Development Workflow
	6.4.3 Feature Inclusion Process

	7 Discussion
	7.1 Project Origin
	7.2 Community
	7.3 Release Process
	7.4 Development

	8 Conclusion
	Bibliography
	Appendix
	A Comparison of Project Graphs
	B Project Resources
	B.1 Drupal
	B.2 Plone
	B.3 Python
	B.4 PHP
	B.5 GNOME
	B.6 KDE
	B.7 PostgreSQL
	B.8 MySQL/MariaDB
	B.9 Fedora
	B.10 Debian

